2019-10-11 Update 1 Project
Detectron2
- intro: Detectron2 is FAIR's next-generation research platform for object detection and segmentation.
- blog
- code: https://github.com/facebookresearch/detectron2
2019-09-06 Update 1 paper
Imbalance Problems in Object Detection: A Review
- intro: under review at TPAMI
- arXiv: https://arxiv.org/abs/1909.00169
2019-08-14 Update 1 paper
Recent Advances in Deep Learning for Object Detection
- intro: From 2013 (OverFeat) to 2019 (DetNAS)
- arXiv: https://arxiv.org/abs/1908.03673
2019-07-24 Update 1 paper
A Survey of Deep Learning-based Object Detection
-
intro:From Fast R-CNN to NAS-FPN
2019-05-17 Update 1 paper
Object Detection in 20 Years: A Survey
- intro:This work has been submitted to the IEEE TPAMI for possible publication
- arXiv:https://arxiv.org/abs/1905.05055
2019-04-05 Update 1 paper
Comparison Network for One-Shot Conditional Object Detection
2019-03-05 Update 1 paper
Feature Selective Anchor-Free Module for Single-Shot Object Detection
- intro: CVPR 2019
- arXiv: https://arxiv.org/abs/1903.00621
2019-02-15 Update 3 detection toolbox
-
Detectron(FAIR): Detectron is Facebook AI Research's software system that implements state-of-the-art object detection algorithms, including Mask R-CNN. It is written in Python and powered by the Caffe2 deep learning framework.
-
maskrcnn-benchmark(FAIR): Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.
-
mmdetection(SenseTime&CUHK): mmdetection is an open source object detection toolbox based on PyTorch. It is a part of the open-mmlab project developed by Multimedia Laboratory, CUHK.
2019-01-25 Update 5 papers
3D Backbone Network for 3D Object Detection
Object Detection based on Region Decomposition and Assembly
-
intro: AAAI 2019
Bottom-up Object Detection by Grouping Extreme and Center Points
- intro: one stage 43.2% on COCO test-dev
- arXiv: https://arxiv.org/abs/1901.08043
- github: https://github.com/xingyizhou/ExtremeNet
ORSIm Detector: A Novel Object Detection Framework in Optical Remote Sensing Imagery Using Spatial-Frequency Channel Features
-
intro: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
Consistent Optimization for Single-Shot Object Detection
-
intro: improves RetinaNet from 39.1 AP to 40.1 AP on COCO datase
2019-01-15 Update 1 paper
Learning Pairwise Relationship for Multi-object Detection in Crowded Scenes
2019-01-14 Update 1 paper
RetinaMask: Learning to predict masks improves state-of-the-art single-shot detection for free
2019-01-12 Update 1 paper
Region Proposal by Guided Anchoring
- intro: CUHK - SenseTime Joint Lab
- arXiv: https://arxiv.org/abs/1901.03278
2019-01-08 Update 1 paper
Scale-Aware Trident Networks for Object Detection
- intro: mAP of 48.4 on the COCO dataset
- arXiv: https://arxiv.org/abs/1901.01892
2019-01-04 Update 1 paper
Large-Scale Object Detection of Images from Network Cameras in Variable Ambient Lighting Conditions
2018-12-13 Update 1 paper
Strong-Weak Distribution Alignment for Adaptive Object Detection
2018-12-05 Update 3 papers
AutoFocus: Efficient Multi-Scale Inference
- intro: AutoFocus obtains an mAP of 47.9% (68.3% at 50% overlap) on the COCO test-dev set while processing 6.4 images per second on a Titan X (Pascal) GPU
- arXiv: https://arxiv.org/abs/1812.01600
NOTE-RCNN: NOise Tolerant Ensemble RCNN for Semi-Supervised Object Detection
- intro: Google Could
- arXiv: https://arxiv.org/abs/1812.00124
SPLAT: Semantic Pixel-Level Adaptation Transforms for Detection
- intro: UC Berkeley
- arXiv: https://arxiv.org/abs/1812.00929
2018-12-04 Update 10 papers
Grid R-CNN
- intro: SenseTime
- arXiv: https://arxiv.org/abs/1811.12030
Deformable ConvNets v2: More Deformable, Better Results
-
intro: Microsoft Research Asia
Anchor Box Optimization for Object Detection
- intro: Microsoft Research
- arXiv: https://arxiv.org/abs/1812.00469
Efficient Coarse-to-Fine Non-Local Module for the Detection of Small Objects
NOTE-RCNN: NOise Tolerant Ensemble RCNN for Semi-Supervised Object Detection
Learning RoI Transformer for Detecting Oriented Objects in Aerial Images
Integrated Object Detection and Tracking with Tracklet-Conditioned Detection
- intro: Microsoft Research Asia
- arXiv: https://arxiv.org/abs/1811.11167
Deep Regionlets: Blended Representation and Deep Learning for Generic Object Detection
Gradient Harmonized Single-stage Detector
- intro: AAAI 2019
- arXiv: https://arxiv.org/abs/1811.05181
CFENet: Object Detection with Comprehensive Feature Enhancement Module
- intro: ACCV 2018
- github: https://github.com/qijiezhao/CFENet
2018-11-19
DeRPN: Taking a further step toward more general object detection
- intro: AAAI 2019
- arXiv: https://arxiv.org/abs/1811.06700
- github: https://github.com/HCIILAB/DeRPN
2018-11-14
M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network
- intro: AAAI 2019
- arXiv: https://arxiv.org/abs/1811.04533
- github: https://github.com/qijiezhao/M2Det
2018-10-31
Hybrid Knowledge Routed Modules for Large-scale Object Detection
- intro: Sun Yat-Sen University & Huawei Noah’s Ark Lab
- arXiv: https://arxiv.org/abs/1810.12681
- github: https://github.com/chanyn/HKRM
2018-10-08
Weakly Supervised Object Detection in Artworks
- intro: ECCV 2018 Workshop Computer Vision for Art Analysis
- arXiv: https://arxiv.org/abs/1810.02569
- Datasets: https://wsoda.telecom-paristech.fr/downloads/dataset/IconArt_v1.zip
Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation
- intro: CVPR 2018
- arXiv: https://arxiv.org/abs/1803.11365
- homepage: https://naoto0804.github.io/cross_domain_detection/
- paper: http://openaccess.thecvf.com/content_cvpr_2018/html/Inoue_Cross-Domain_Weakly-Supervised_Object_CVPR_2018_paper.html
- github: https://github.com/naoto0804/cross-domain-detection
2018-09-26
Object Detection from Scratch with Deep Supervision
- intro: This is an extended version of DSOD
- arXiv: https://arxiv.org/abs/1809.09294
2018-09-25
《Softer-NMS: Rethinking Bounding Box Regression for Accurate Object Detection》
- intro: CMU & Face++
- arXiv: https://arxiv.org/abs/1809.08545
- github: https://github.com/yihui-he/softer-NMS
2018-09-21
《Receptive Field Block Net for Accurate and Fast Object Detection》
- intro: ECCV 2018
- arXiv: https://arxiv.org/abs/1711.07767
- github: https://github.com/ruinmessi/RFBNet
2018-09-11
《Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks》
-
intro: awesome
2018-09-10
《Deep Learning for Generic Object Detection: A Survey》
- intro: Submitted to IJCV 2018
- arXiv: https://arxiv.org/abs/1809.02165
2018-08-27
Deep Feature Pyramid Reconfiguration for Object Detection
- intro: ECCV 2018
- arXiv: https://arxiv.org/abs/1808.07993
2018-08-17
R3-Net: A Deep Network for Multi-oriented Vehicle Detection in Aerial Images and Videos
- arxiv: https://arxiv.org/abs/1808.05560
- youtube: https://youtu.be/xCYD-tYudN0
2018-08-14
《Unsupervised Hard Example Mining from Videos for Improved Object Detection》
- intro: ECCV 2018
- arXiv: https://arxiv.org/abs/1808.04285
2018-08-10
CornerNet: Detecting Objects as Paired Keypoints
- intro: ECCV 2018
- arXiv: https://arxiv.org/abs/1808.01244
2018-07-30
Acquisition of Localization Confidence for Accurate Object Detection
- intro: ECCV 2018
- arXiv: https://arxiv.org/abs/1807.11590
- github: https://github.com/vacancy/PreciseRoIPooling