-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlist-of-contributors.html
557 lines (512 loc) · 48.2 KB
/
list-of-contributors.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<title>Technical Manual Global Soil Organic Carbon Sequestration Potential Map GSOCseq</title>
<meta name="description" content="The GSOCseq Technical Manual" />
<meta name="generator" content="bookdown 0.22 and GitBook 2.6.7" />
<meta property="og:title" content="Technical Manual Global Soil Organic Carbon Sequestration Potential Map GSOCseq" />
<meta property="og:type" content="book" />
<meta property="og:description" content="The GSOCseq Technical Manual" />
<meta name="twitter:card" content="summary" />
<meta name="twitter:title" content="Technical Manual Global Soil Organic Carbon Sequestration Potential Map GSOCseq" />
<meta name="twitter:description" content="The GSOCseq Technical Manual" />
<meta name="author" content="Food and Agriculture Organization of the United Nations, Rome, 2020" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" content="black" />
<script src="libs/header-attrs-2.7/header-attrs.js"></script>
<script src="libs/jquery-2.2.3/jquery.min.js"></script>
<link href="libs/gitbook-2.6.7/css/style.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-table.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-bookdown.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-highlight.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-search.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-fontsettings.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-clipboard.css" rel="stylesheet" />
<link href="libs/anchor-sections-1.0.1/anchor-sections.css" rel="stylesheet" />
<script src="libs/anchor-sections-1.0.1/anchor-sections.js"></script>
<style type="text/css">
/* Used with Pandoc 2.11+ new --citeproc when CSL is used */
div.csl-bib-body { }
div.csl-entry {
clear: both;
}
.hanging div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}
</style>
<link rel="stylesheet" href="style.css" type="text/css" />
</head>
<body>
<div class="book without-animation with-summary font-size-2 font-family-1" data-basepath=".">
<div class="book-summary">
<nav role="navigation">
<ul class="summary">
<li class="chapter" data-level="" data-path=""><a href="#list-of-contributors"><i class="fa fa-check"></i>List of contributors</a>
<ul>
<li class="chapter" data-level="" data-path=""><a href="#authors"><i class="fa fa-check"></i>Authors</a></li>
<li class="chapter" data-level="" data-path=""><a href="#contributers-and-reviewers"><i class="fa fa-check"></i>Contributers and Reviewers</a></li>
<li class="chapter" data-level="" data-path=""><a href="#special-advisor"><i class="fa fa-check"></i>Special Advisor</a></li>
<li class="chapter" data-level="" data-path=""><a href="#github-page"><i class="fa fa-check"></i>GitHub Page</a></li>
</ul></li>
<li class="divider"></li>
<li><a href="https://github.com/rstudio/bookdown" target="blank">Published with bookdown</a></li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i><a href="./">Technical Manual Global Soil Organic Carbon Sequestration Potential Map GSOCseq</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<section class="normal" id="section-">
<div id="header">
<h1 class="title">Technical Manual Global Soil Organic Carbon Sequestration Potential Map GSOCseq</h1>
<p class="author"><em>Food and Agriculture Organization of the United Nations, Rome, 2020</em></p>
<p class="date" style="margin-top: 1.5em;"><em>25/11/2020</em></p>
</div>
<div id="list-of-contributors" class="section level1 unnumbered">
<h1>List of contributors</h1>
<div id="authors" class="section level2 unnumbered">
<h2>Authors</h2>
<p>Guillermo Peralta (GSP Secretariat)<br />
Luciano Di Paolo (GSP Secretariat)<br />
Christian Omuto (GSP Secretariat)<br />
Kostiantyn Viatkin (GSP Secretariat)<br />
Isabel Luotto (GSP Secretariat)<br />
Yusuf Yigini (GSP Secretariat)</p>
<p><em>Cover design:</em> Matteo Sala</p>
</div>
<div id="contributers-and-reviewers" class="section level2 unnumbered">
<h2>Contributers and Reviewers</h2>
<table>
<colgroup>
<col width="11%" />
<col width="88%" />
</colgroup>
<tbody>
<tr class="odd">
<td>P4WG</td>
<td>(Pillar 4 Working Group Agency)</td>
</tr>
<tr class="even">
<td>INSII</td>
<td>(International Network of Soil Information Institutions)</td>
</tr>
<tr class="odd">
<td>ITPS</td>
<td>(Intergovernmental Technical Panel on Soils)</td>
</tr>
<tr class="even">
<td>4per1000 SCT</td>
<td>(4 per 1000 Scientific and Technical Committee)</td>
</tr>
<tr class="odd">
<td>CIRCASA</td>
<td>(Coordination of International Research Cooperation on Soil Carbon Sequestration in Agriculture)</td>
</tr>
<tr class="even">
<td>UNCCD-SPI</td>
<td>(The UNCCD Science-Policy Interface)</td>
</tr>
</tbody>
</table>
</div>
<div id="special-advisor" class="section level2 unnumbered">
<h2>Special Advisor</h2>
<p>Pete Smith (University of Aberdeen)</p>
</div>
<div id="github-page" class="section level2 unnumbered">
<h2>GitHub Page</h2>
<p>Isabel Luotto (GSP Secretariat)</p>
<p><strong>Recommended citation:</strong></p>
<blockquote>
<p>FAO. 2020. GSOCseq Global Soil Organic Carbon Sequestration Potential Map
Technical Manual. G. Peralta,L. Di Paolo, C. Omuto, K. Viatkin, I. Luotto, Y. Yigini, 1st Edition, Rome.</p>
</blockquote>
<div id="refs" class="references csl-bib-body">
<div class="csl-entry">
<strong>Abberton, M.T., Conant, R.T. & Batello, C.</strong> 2010. <em><span class="nocase">Grassland carbon sequestration: Management, policy and economics : proceedings of the Workshop on the role of grassland carbon sequestration in the mitigation of climate change</span></em>. Integrated crop management, 1020-4555. Rome, Food; Agriculture Organization of the United Nations, Plant Production; Protection Division; Food; Agriculture Organization of the United Nations.
</div>
<div class="csl-entry">
<strong>Al-Adamat, R., Rawajfih, Z., Easter, M., Paustian, K., Coleman, K., Milne, E., Falloon, P., Powlson, D.S. & BATJES, N.H.</strong> 2007. <span class="nocase">Predicted soil organic carbon stocks and changes in Jordan between 2000 and 2030 made using the GEFSOC Modelling System</span>. <em>Agriculture, Ecosystems <span>&</span> Environment</em>, 122(1): 35–45. <a href="https://doi.org/10.1016/j.agee.2007.01.006">https://doi.org/10.1016/j.agee.2007.01.006</a>
</div>
<div class="csl-entry">
<strong>Allen, M.R. & Stocker, T.F.</strong> 2014. <span class="nocase">Impact of delay in reducing carbon dioxide emissions</span>. <em>Nature Climate Change</em>, 4(1): 23–26. <a href="https://doi.org/10.1038/nclimate2077">https://doi.org/10.1038/nclimate2077</a>
</div>
<div class="csl-entry">
<strong>Anonymous</strong>. undated. <span class="nocase">Global Soil Organic Carbon (GSOC) Map | Global Soil Partnership | Food and Agriculture Organization of the United Nations</span>. [Cited 26 November 2020]. <a href="http://www.fao.org/global-soil-partnership/pillars-action/4-information-and-data-new/global-soil-organic-carbon-gsoc-map">http://www.fao.org/global-soil-partnership/pillars-action/4-information-and-data-new/global-soil-organic-carbon-gsoc-map</a>
</div>
<div class="csl-entry">
<strong>Bahn, M., Kutsch, W.L. & Heinemeyer, A.</strong> 2012. <span class="nocase">Synthesis: emerging issues and challenges for an integrated understanding of soil carbon fluxes</span>. <em>In</em> W.L. Kutsch, ed. <em>Soil carbon dynamics</em>, pp. 257–271. Cambridge, Cambridge University Press.
</div>
<div class="csl-entry">
<strong>Batjes, N.H.</strong> 1996. <span class="nocase">Total carbon and nitrogen in the soils of the world</span>. <em>European Journal of Soil Science</em>, 47(2): 151–163. <a href="https://doi.org/10.1111/j.1365-2389.1996.tb01386.x">https://doi.org/10.1111/j.1365-2389.1996.tb01386.x</a>
</div>
<div class="csl-entry">
<strong>Beek, J. & Frissel, M.J.</strong> 1973. <em><span class="nocase">Simulation of nitrogen behaviour in soils</span></em>. Simulation monographs. Wageningen, Pudoc. (also available at <a href="http://eprints.icrisat.ac.in/13135/">http://eprints.icrisat.ac.in/13135/</a>).
</div>
<div class="csl-entry">
<strong>Bolinder, M.A., Janzen, H.H., Gregorich, E.G., Angers, D.A. & VandenBygaart, A.J.</strong> 2007. <span class="nocase">An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada</span>. <em>Agriculture, Ecosystems <span>&</span> Environment</em>, 118(1-4): 29–42. <a href="https://doi.org/10.1016/j.agee.2006.05.013">https://doi.org/10.1016/j.agee.2006.05.013</a>
</div>
<div class="csl-entry">
<strong>Campbell, E.E. & Paustian, K.</strong> 2015. <span class="nocase">Current developments in soil organic matter modeling and the expansion of model applications: a review</span>. <em>Environmental Research Letters</em>, 10(12): 123004. <a href="https://doi.org/10.1088/1748-9326/10/12/123004">https://doi.org/10.1088/1748-9326/10/12/123004</a>
</div>
<div class="csl-entry">
<strong>Clarholm, M. & Bergström, L., eds.</strong> 1989. <em><span class="nocase">Ecology of Arable Land – Perspectives and Challenges: Proceeding of an International Symposium, 9-12 June 1987 Swedish University of Agricultural Sciences, Uppsala, Sweden</span></em>. Developments in plant and soil sciences. Dordrecht, Springer Netherlands.
</div>
<div class="csl-entry">
<strong>Coleman, K. & Jenkinson, D.S.</strong> 1996. <span class="nocase">RothC-26.3 - A Model for the turnover of carbon in soil</span>. <em>In</em> D.S. Powlson, P. Smith & J.U. Smith, eds. <em>Evaluation of soil organic matter models</em>. pp. 237–246. NATO ASI series. Series i, global environmental change. Paper presented at, 1996, Berlin; New York.
</div>
<div class="csl-entry">
<strong>Easter, M., Paustian, K., Killian, K., Williams, S., Feng, T., Al-Adamat, R., BATJES, N.H., Bernoux, M., Bhattacharyya, T., Cerri, C.C., Cerri, C.E.P., Coleman, K., Falloon, P., Feller, C., Gicheru, P., Kamoni, P., Milne, E., Pal, D.K., Powlson, D.S., Rawajfih, Z., Sessay, M. & Wokabi, S.</strong> 2007. <span class="nocase">The GEFSOC soil carbon modelling system: A tool for conducting regional-scale soil carbon inventories and assessing the impacts of land use change on soil carbon</span>. <em>Agriculture, Ecosystems <span>&</span> Environment</em>, 122(1): 13–25. <a href="https://doi.org/10.1016/j.agee.2007.01.004">https://doi.org/10.1016/j.agee.2007.01.004</a>
</div>
<div class="csl-entry">
<strong>Eggleston, H.S., ed.</strong> 2006. <em><span class="nocase">2006 IPCC guidelines for national greenhouse gas inventories</span></em>. Hayama, Japan, Institute for Global Environmental Strategies.
</div>
<div class="csl-entry">
<strong>Falloon, P.D., Smith, P., Smith, J.U., Szabó, J., Coleman, K. & Marshall, S.</strong> 1998. <span class="nocase">Regional estimates of carbon sequestration potential: linking the Rothamsted Carbon Model to GIS databases</span>. <em>Biology and Fertility of Soils</em>, 27(3): 236–241. <a href="https://doi.org/10.1007/s003740050426">https://doi.org/10.1007/s003740050426</a>
</div>
<div class="csl-entry">
<strong>Falloon, P., Jones, C.D., Cerri, C.E., Al-Adamat, R., Kamoni, P., Bhattacharyya, T., Easter, M., Paustian, K., Killian, K., Coleman, K. & Milne, E.</strong> 2007. <span class="nocase">Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil</span>. <em>Agriculture, Ecosystems <span>&</span> Environment</em>, 122(1): 114–124. <a href="https://doi.org/10.1016/j.agee.2007.01.013">https://doi.org/10.1016/j.agee.2007.01.013</a>
</div>
<div class="csl-entry">
<strong>Falloon, P. & Smith, P.</strong> 2003. <span class="nocase">Accounting for changes in soil carbon under the Kyoto Protocol: need for improved long-term data sets to reduce uncertainty in model projections</span>. <em>Soil Use and Management</em>, 19(3): 265–269. <a href="https://doi.org/10.1111/j.1475-2743.2003.tb00313.x">https://doi.org/10.1111/j.1475-2743.2003.tb00313.x</a>
</div>
<div class="csl-entry">
<strong>Farina, R., Coleman, K. & Whitmore, A.P.</strong> 2013. <span class="nocase">Modification of the RothC model for simulations of soil organic C dynamics in dryland regions</span>. <em>Geoderma</em>, 200-201: 18–30. <a href="https://doi.org/10.1016/j.geoderma.2013.01.021">https://doi.org/10.1016/j.geoderma.2013.01.021</a>
</div>
<div class="csl-entry">
<strong>Farina, R., Marchetti, A., Francaviglia, R., Napoli, R. & Di Bene, C.</strong> 2017. <span class="nocase">Modeling regional soil C stocks and CO2 emissions under Mediterranean cropping systems and soil types</span>. <em>Agriculture, Ecosystems <span>&</span> Environment</em>, 238: 128–141. <a href="https://doi.org/10.1016/j.agee.2016.08.015">https://doi.org/10.1016/j.agee.2016.08.015</a>
</div>
<div class="csl-entry">
<strong>Follett, R.F., Kimble, J.M., Pruessner, E.G., Samson-Liebig, S. & Waltman, S.</strong> 2009. <span class="nocase">Soil Organic Carbon Stocks with Depth and Land Use at Various U.S. Sites</span>. <em>In</em> R. Lal & R.F. Follett, eds. <em>Soil carbon sequestration and the greenhouse effect</em>, pp. 29–46. SSSA special publication. Madison, WI, Soil Science Society of America, Inc.
</div>
<div class="csl-entry">
<strong>Food and Agriculture Organization of the United Nations</strong>. 2017. <span class="nocase">Voluntary Guidelines for Sustainable Soil Management</span>. Rome, FAO. <a href="http://www.fao.org/documents/card/en/c/5544358d-f11f-4e9f-90ef-a37c3bf52db7/">http://www.fao.org/documents/card/en/c/5544358d-f11f-4e9f-90ef-a37c3bf52db7/</a>
</div>
<div class="csl-entry">
<strong>Franko, U.</strong> 1996. <span class="nocase">Modelling approaches of soil organic matter turnover within the CANDY system</span>. <em>In</em> D.S. Powlson, P. Smith & J.U. Smith, eds. <em>Evaluation of soil organic matter models</em>. pp. 247–254. NATO ASI series. Series i, global environmental change. Paper presented at, 1996, Berlin; New York.
</div>
<div class="csl-entry">
<strong>Gilhespy, S.L., Anthony, S., Cardenas, L., Chadwick, D., Prado, A. del, Li, C., Misselbrook, T., Rees, R.M., Salas, W., Sanz-Cobena, A., Smith, P., Tilston, E.L., Topp, C.F.E., Vetter, S. & Yeluripati, J.B.</strong> 2014. <span class="nocase">First 20 years of DNDC (DeNitrification DeComposition): Model evolution</span>. <em>Ecological Modelling</em>, 292: 51–62. <a href="https://doi.org/10.1016/j.ecolmodel.2014.09.004">https://doi.org/10.1016/j.ecolmodel.2014.09.004</a>
</div>
<div class="csl-entry">
<strong>Gottschalk, P., Smith, J.U., Wattenbach, M., Bellarby, J., Stehfest, E., Arnell, N., Osborn, T.J., Jones, C. & Smith, P.</strong> 2012. <span class="nocase">How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios</span>. <em>Biogeosciences</em>, 9(8): 3151–3171. <a href="https://doi.org/10.5194/bg-9-3151-2012">https://doi.org/10.5194/bg-9-3151-2012</a>
</div>
<div class="csl-entry">
<strong>Grace, P., Ladd, J., Robertson, G. & Gage, S.</strong> 2006. <span class="nocase">SOCRATES - A simple model for predicting long-term changes in soil organic carbon in terrestrial ecosystems</span>. <em>Soil Biology and Biochemistry</em>, 38(5): 1172–1176. <a href="https://doi.org/10.1016/j.soilbio.2005.09.013">https://doi.org/10.1016/j.soilbio.2005.09.013</a>
</div>
<div class="csl-entry">
<strong>Hadas, A., Parkin, T.B. & Stahl, P.D.</strong> 1998. <span class="nocase">Reduced CO 2 release from decomposing wheat straw under N-limiting conditions: simulation of carbon turnover</span>. <em>European Journal of Soil Science</em>, 49(3): 487–494. <a href="https://doi.org/10.1046/j.1365-2389.1998.4930487.x">https://doi.org/10.1046/j.1365-2389.1998.4930487.x</a>
</div>
<div class="csl-entry">
<strong>Hansen, S., Jensen, H.E., Nielsen, N.E. & Svendsen, H.</strong> 1991. <span class="nocase">Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY</span>. <em>Fertilizer research</em>, 27(2-3): 245–259. <a href="https://doi.org/10.1007/BF01051131">https://doi.org/10.1007/BF01051131</a>
</div>
<div class="csl-entry">
<strong>Hengl, T., Mendes de Jesus, J., Heuvelink, G.B.M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M.N., Geng, X., Bauer-Marschallinger, B., Guevara, M.A., Vargas, R., MacMillan, R.A., Batjes, N.H., Leenaars, J.G.B., Ribeiro, E., Wheeler, I., Mantel, S. & Kempen, B.</strong> 2017. <span class="nocase">SoilGrids250m: Global gridded soil information based on machine learning</span>. <em>PloS one</em>, 12(2): e0169748. <a href="https://doi.org/10.1371/journal.pone.0169748">https://doi.org/10.1371/journal.pone.0169748</a>
</div>
<div class="csl-entry">
<strong>IPCC</strong>. 2019. <span class="nocase">2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories</span>. <a href="https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html">https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html</a>
</div>
<div class="csl-entry">
<strong>Jansson, C., Wullschleger, S.D., Kalluri, U.C. & Tuskan, G.A.</strong> 2010. <span class="nocase">Phytosequestration: Carbon Biosequestration by Plants and the Prospects of Genetic Engineering</span>. <em>BioScience</em>, 60(9): 685–696. <a href="https://doi.org/10.1525/bio.2010.60.9.6">https://doi.org/10.1525/bio.2010.60.9.6</a>
</div>
<div class="csl-entry">
<strong>Jenkinson, D.S., Adams, D.E. & Wild, A.</strong> 1991. <span class="nocase">Model estimates of CO2 emissions from soil in response to global warming</span>. <em>Nature</em>, 351(6324): 304–306. <a href="https://doi.org/10.1038/351304a0">https://doi.org/10.1038/351304a0</a>
</div>
<div class="csl-entry">
<strong>Jenkinson, D.S. & Coleman, K.</strong> 2008. <span class="nocase">The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover</span>. <em>European Journal of Soil Science</em>, 59(2): 400–413. <a href="https://doi.org/10.1111/j.1365-2389.2008.01026.x">https://doi.org/10.1111/j.1365-2389.2008.01026.x</a>
</div>
<div class="csl-entry">
<strong>Jenkinson, D.S. & Rayner, J.H.</strong> 1977. <span class="nocase">The Turnover of Soil Organic Matter in Some of The Rothamsted Classical Experiments</span>. <em>Soil Science</em>, 123(5): 298–305. <a href="https://doi.org/10.1097/00010694-197705000-00005">https://doi.org/10.1097/00010694-197705000-00005</a>
</div>
<div class="csl-entry">
<strong>Jenny, H.</strong> 1994. <em><span class="nocase">Factors of soil formation: A system of quantitative pedology</span></em>. New York, Dover.
</div>
<div class="csl-entry">
<strong>Jenny, H., Gessel, S.P. & Bingham, F.T.</strong> 1949. <span class="nocase">Comparative Study of Decomposition Rates of Organic Matter in Temperate and Tropical Regions</span>. <em>Soil Science</em>, 68(6): 419–432. <a href="https://doi.org/10.1097/00010694-194912000-00001">https://doi.org/10.1097/00010694-194912000-00001</a>
</div>
<div class="csl-entry">
<strong>Jo Smith, P.S., Jeannette Meyer, M.W., Sönke Zaehle, M.L., Robert J.A. Jones, R.H., Mark Rounsevell, L.M., REGINSTER, I. & Kankaanpää, S.</strong> 2006. <span class="nocase">Projected changes in mineral soil carbon of European forests, 1990–2100</span>. <em>Canadian Journal of Soil Science</em>, 86(Special Issue): 159–169. <a href="https://doi.org/10.4141/S05-078">https://doi.org/10.4141/S05-078</a>
</div>
<div class="csl-entry">
<strong>Keenan, T.F., Carbone, M.S., Reichstein, M. & Richardson, A.D.</strong> 2011. <span class="nocase">The model-data fusion pitfall: assuming certainty in an uncertain world</span>. <em>Oecologia</em>, 167(3): 587–597. <a href="https://doi.org/10.1007/s00442-011-2106-x">https://doi.org/10.1007/s00442-011-2106-x</a>
</div>
<div class="csl-entry">
<strong>Kutsch, W., Bahn, M. & Heinemeyer, A.</strong> 2016. <em><span class="nocase">Soil carbon dynamics: An integrated methodology / edited by Werner L. Kutsch (Johann Heinrich von Th<span class="nocase">ü</span>nen Institut, Braunschweig), Michael Bahn (Leopold-Franzens Universit<span class="nocase">ä</span>t Innsbruck), Andreas Heinemeyer (Stockholm Environment Institute, University of York)</span></em>. Reprinted with corrections edition. Cambridge, Cambridge University Press.
</div>
<div class="csl-entry">
<strong>Kutsch, W.L., ed.</strong> 2012. <em><span class="nocase">Soil carbon dynamics: An integrated methodology</span></em>. Repr. with edition. Cambridge, Cambridge University Press.
</div>
<div class="csl-entry">
<strong>Lal, R.</strong> 2004. <span class="nocase">Soil carbon sequestration impacts on global climate change and food security</span>. <em>Science (New York, N.Y.)</em>, 304(5677): 1623–1627. <a href="https://doi.org/10.1126/science.1097396">https://doi.org/10.1126/science.1097396</a>
</div>
<div class="csl-entry">
<strong>Lal, R. & Follett, R.F., eds.</strong> 2009. <em><span class="nocase">Soil carbon sequestration and the greenhouse effect</span></em>. Second edi edition. SSSA special publication. Madison, WI, Soil Science Society of America, Inc.
</div>
<div class="csl-entry">
<strong>Lal, R., Smith, P., Jungkunst, H.F., Mitsch, W.J., Lehmann, J., Nair, P.RamachandranK., McBratney, A.B., de Moraes Sá, J.C., Schneider, J., Zinn, Y.L., Skorupa, A.L.A., Zhang, H.-L., Minasny, B., Srinivasrao, C. & Ravindranath, N.H.</strong> 2018. <span class="nocase">The carbon sequestration potential of terrestrial ecosystems</span>. <em>Journal of Soil and Water Conservation</em>, 73(6): 145A—–152A. <a href="https://doi.org/10.2489/jswc.73.6.145A">https://doi.org/10.2489/jswc.73.6.145A</a>
</div>
<div class="csl-entry">
<strong>Lauenroth, W.K., Skogerboe, G.V. & Flug, M., eds.</strong> 1983. <em><span class="nocase">Analysis of ecological systems: State-of-the-art in ecological modelling / edited by William K. Lauenroth, Gaylord V. Skogerboe, Marshall Flug ; proceedings of a symposium held from 24 to 28 May 1982 at Colorado State University, Fort Collins, Colorado, U.S.A. ; sponsored by the International Society for Ecological Modelling (ISEM) ; hosted by the Natural Resource Ecology Laboratory, Colorado State University</span></em>. Developments in environmental modelling. Armstrong; Oxford, Elsevier Scientific.
</div>
<div class="csl-entry">
<strong>Lehtonen, A., \backslashvTupek, B., Nieminen, T.M., Balázs, A., Anjulo, A., Teshome, M., Tiruneh, Y. & Alm, J.</strong> 2020. <span class="nocase">Soil carbon stocks in Ethiopian forests and estimations of their future development under different forest use scenarios</span>. <em>Land Degradation <span>&</span> Development</em>. <a href="https://doi.org/10.1002/ldr.3647">https://doi.org/10.1002/ldr.3647</a>
</div>
<div class="csl-entry">
<strong>Li, C.</strong> 1996. <span>The DNDC Model</span>. <em>In</em> D.S. Powlson, P. Smith & J.U. Smith, eds. <em>Evaluation of soil organic matter models</em>. pp. 263–267. NATO ASI series. Series i, global environmental change. Paper presented at, 1996, Berlin; New York.
</div>
<div class="csl-entry">
<strong>Lieth, H.</strong> 1975. <span class="nocase">Modeling the Primary Productivity of the World</span>. <em>In</em> H. Lieth & R.H. Whittaker, eds. <em>Primary productivity of the biosphere</em>, pp. 237–263. Ecological studies, analysis and synthesis, 0070-8356. Berlin, Heidelberg, Springer Berlin Heidelberg.
</div>
<div class="csl-entry">
<strong>Lieth, H. & Whittaker, R.H., eds.</strong> 1975. <em><span class="nocase">Primary Productivity of the Biosphere</span></em>. Ecological studies, analysis and synthesis, 0070-8356. Berlin, Heidelberg, Springer Berlin Heidelberg.
</div>
<div class="csl-entry">
<strong>Lorenz, K. & Lal, R.</strong> 2018. <em><span class="nocase">Carbon sequestration in agricultural ecosystems</span></em>. Cham, Switzerland, Springer.
</div>
<div class="csl-entry">
<strong>Lugato, E., Bampa, F., Panagos, P., Montanarella, L. & Jones, A.</strong> 2014. <span class="nocase">Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices</span>. <em>Global change biology</em>, 20(11): 3557–3567. <a href="https://doi.org/10.1111/gcb.12551">https://doi.org/10.1111/gcb.12551</a>
</div>
<div class="csl-entry">
<strong>Manzoni, S. & Porporato, A.</strong> 2009. <span class="nocase">Soil carbon and nitrogen mineralization: Theory and models across scales</span>. <em>Soil Biology and Biochemistry</em>, 41(7): 1355–1379. <a href="https://doi.org/10.1016/j.soilbio.2009.02.031">https://doi.org/10.1016/j.soilbio.2009.02.031</a>
</div>
<div class="csl-entry">
<strong>Martens, R.</strong> 1995. <span class="nocase">Current methods for measuring microbial biomass C in soil: Potentials and limitations</span>. <em>Biology and Fertility of Soils</em>, 19(2-3): 87–99. <a href="https://doi.org/10.1007/BF00336142">https://doi.org/10.1007/BF00336142</a>
</div>
<div class="csl-entry">
<strong>Milne, E., Adamat, R.A., BATJES, N.H., Bernoux, M., Bhattacharyya, T., Cerri, C.C., Cerri, C.E.P., Coleman, K., Easter, M., Falloon, P., Feller, C., Gicheru, P., Kamoni, P., Killian, K., Pal, D.K., Paustian, K., Powlson, D.S., Rawajfih, Z., Sessay, M., Williams, S. & Wokabi, S.</strong> 2007. <span class="nocase">National and sub-national assessments of soil organic carbon stocks and changes: The GEFSOC modelling system</span>. <em>Agriculture, Ecosystems <span>&</span> Environment</em>, 122(1): 3–12. <a href="https://doi.org/10.1016/j.agee.2007.01.002">https://doi.org/10.1016/j.agee.2007.01.002</a>
</div>
<div class="csl-entry">
<strong>Minasny, B., Malone, B.P., McBratney, A.B., Angers, D.A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B.S., Field, D.J., Gimona, A., Hedley, C.B., Hong, S.Y., Mandal, B., Marchant, B.P., Martin, M., McConkey, B.G., Mulder, V.L., O’Rourke, S., Richer-de-Forges, A.C., Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen, T.-G., Wesemael, B. van & Winowiecki, L.</strong> 2017. <span class="nocase">Soil carbon 4 per mille</span>. <em>Geoderma</em>, 292: 59–86. <a href="https://doi.org/10.1016/j.geoderma.2017.01.002">https://doi.org/10.1016/j.geoderma.2017.01.002</a>
</div>
<div class="csl-entry">
<strong>Mondini, C., Coleman, K. & Whitmore, A.P.</strong> 2012. <span class="nocase">Spatially explicit modelling of changes in soil organic C in agricultural soils in Italy, 2001–2100: Potential for compost amendment</span>. <em>Agriculture, Ecosystems <span>&</span> Environment</em>, 153: 24–32. <a href="https://doi.org/10.1016/j.agee.2012.02.020">https://doi.org/10.1016/j.agee.2012.02.020</a>
</div>
<div class="csl-entry">
<strong>Moradizadeh, M. & Saradjian, M.R.</strong> 2016. <span class="nocase">Vegetation Effects Modeling in Soil Moisture Retrieval Using MSVI</span>. <em>Photogrammetric Engineering <span>&</span> Remote Sensing</em>, 82(10): 803–810. <a href="https://doi.org/10.14358/PERS.82.10.803">https://doi.org/10.14358/PERS.82.10.803</a>
</div>
<div class="csl-entry">
<strong>Morais, T.G., Teixeira, R.F.M. & Domingos, T.</strong> 2019. <span class="nocase">Detailed global modelling of soil organic carbon in cropland, grassland and forest soils</span>. <em>PloS one</em>, 14(9): e0222604. <a href="https://doi.org/10.1371/journal.pone.0222604">https://doi.org/10.1371/journal.pone.0222604</a>
</div>
<div class="csl-entry">
<strong>Motavalli, P.P., Palm, C.A., Parton, W.J., Elliott, E.T. & Frey, S.D.</strong> 1995. <span class="nocase">Soil pH and organic C dynamics in tropical forest soils: Evidence from laboratory and simulation studies</span>. <em>Soil Biology and Biochemistry</em>, 27(12): 1589–1599. <a href="https://doi.org/10.1016/0038-0717(95)00082-P">https://doi.org/10.1016/0038-0717(95)00082-P</a>
</div>
<div class="csl-entry">
<strong>Neumann, M. & Smith, P.</strong> 2018. <span class="nocase">Carbon uptake by European agricultural land is variable, and in many regions could be increased: Evidence from remote sensing, yield statistics and models of potential productivity</span>. <em>The Science of the total environment</em>, 643: 902–911. <a href="https://doi.org/10.1016/j.scitotenv.2018.06.268">https://doi.org/10.1016/j.scitotenv.2018.06.268</a>
</div>
<div class="csl-entry">
<strong>Palosuo, T., Foereid, B., Svensson, M., Shurpali, N., Lehtonen, A., Herbst, M., Linkosalo, T., Ortiz, C., Rampazzo Todorovic, G., Marcinkonis, S., Li, C. & Jandl, R.</strong> 2012. <span class="nocase">A multi-model comparison of soil carbon assessment of a coniferous forest stand</span>. <em>Environmental Modelling <span>&</span> Software</em>, 35: 38–49. <a href="https://doi.org/10.1016/j.envsoft.2012.02.004">https://doi.org/10.1016/j.envsoft.2012.02.004</a>
</div>
<div class="csl-entry">
<strong>Parshotam, A. & Hewitt, A.E.</strong> 1995. <span class="nocase">Application of the Rothamsted carbon turnover model to soils in degraded semi-arid land in New Zealand</span>. <em>Environment International</em>, 21(5): 693–697. <a href="https://doi.org/10.1016/0160-4120(95)00071-R">https://doi.org/10.1016/0160-4120(95)00071-R</a>
</div>
<div class="csl-entry">
<strong>Parton, W.J.</strong> 1996. <span class="nocase">The CENTURY model</span>. <em>In</em> D.S. Powlson, P. Smith & J.U. Smith, eds. <em>Evaluation of soil organic matter models</em>. pp. 283–291. NATO ASI series. Series i, global environmental change. Paper presented at, 1996, Berlin; New York.
</div>
<div class="csl-entry">
<strong>Parton, W.J., Cole, C.V., Stewart, J.W.B., Ojima, D.S. & Schimel, D.S.</strong> 1989. <span class="nocase">Simulating regional patterns of soil C, N, and P dynamics in the U.S. central grasslands region</span>. <em>In</em> M. Clarholm & L. Bergström, eds. <em>Ecology of arable land – perspectives and challenges</em>, pp. 99–108. Developments in plant and soil sciences. Dordrecht, Springer Netherlands.
</div>
<div class="csl-entry">
<strong>Paustian, K., Collier, S., Baldock, J., Burgess, R., Creque, J., DeLonge, M., Dungait, J., Ellert, B., Frank, S., Goddard, T., Govaerts, B., Grundy, M., Henning, M., Izaurralde, R.C., Madaras, M., McConkey, B., Porzig, E., Rice, C., Searle, R., Seavy, N., Skalsky, R., Mulhern, W. & Jahn, M.</strong> 2019. <span class="nocase">Quantifying carbon for agricultural soil management: from the current status toward a global soil information system</span>. <em>Carbon Management</em>, 10(6): 567–587. <a href="https://doi.org/10.1080/17583004.2019.1633231">https://doi.org/10.1080/17583004.2019.1633231</a>
</div>
<div class="csl-entry">
<strong>Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G.P. & Smith, P.</strong> 2016. <span class="nocase">Climate-smart soils</span>. <em>Nature</em>, 532(7597): 49–57. <a href="https://doi.org/10.1038/nature17174">https://doi.org/10.1038/nature17174</a>
</div>
<div class="csl-entry">
<strong>Petri, M., Batello, C., Villani, R. & Nachtergaele, F.</strong> 2009. <em><span class="nocase">Carbon status and carbon sequestration potential in the world’s grasslands</span></em>. FAO.
</div>
<div class="csl-entry">
<strong>Plutzar, C., Kroisleitner, C., Haberl, H., Fetzel, T., Bulgheroni, C., Beringer, T., Hostert, P., Kastner, T., Kuemmerle, T., Lauk, C., Levers, C., Lindner, M., Moser, D., Müller, D., Niedertscheider, M., Paracchini, M.L., Schaphoff, S., Verburg, P.H., Verkerk, P.J. & Erb, K.-H.</strong> 2016. <span class="nocase">Changes in the spatial patterns of human appropriation of net primary production (HANPP) in Europe 1990–2006</span>. <em>Regional Environmental Change</em>, 16(5): 1225–1238. <a href="https://doi.org/10.1007/s10113-015-0820-3">https://doi.org/10.1007/s10113-015-0820-3</a>
</div>
<div class="csl-entry">
<strong>Poeplau, Christopher and Don, Axel</strong>. 2012. <span class="nocase">Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe</span>. <em>Geoderma</em>, 192: 189–201. <a href="https://doi.org/10.1016/j.geoderma.2012.08.003">https://doi.org/10.1016/j.geoderma.2012.08.003</a>
</div>
<div class="csl-entry">
<strong>Poulton, P., Johnston, J., Macdonald, A., White, R. & Powlson, D.</strong> 2018. <span class="nocase">Major limitations to achieving "4 per 1000" increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted Research, United Kingdom</span>. <em>Global change biology</em>, 24(6): 2563–2584. <a href="https://doi.org/10.1111/gcb.14066">https://doi.org/10.1111/gcb.14066</a>
</div>
<div class="csl-entry">
<strong>Powlson, D.S., Smith, P. & Smith, J.U., eds.</strong> 1996. <em><span class="nocase">Evaluation of soil organic matter models: Using existing long-term datasets</span></em>. NATO ASI series. Series i, global environmental change. Berlin; New York, NATO Advanced Research Workshop <span>{</span><span class="math inline">\(\backslash\)</span>textquotedbl<span>}</span>Evaluation of Soil Organic Matter Models Using Existing Long-term Datasets<span>{</span><span class="math inline">\(\backslash\)</span>textquotedbl<span>}</span>; Springer.
</div>
<div class="csl-entry">
<strong>Richter, J.</strong> 1981. <span class="nocase">Simulation of nitrogen behaviour of soil-plant systems, Papers of a workshop Models for the behaviour of nitrogen in soil and uptake by plant</span>. <em>Zeitschrift f<span>ü</span>r Pflanzenern<span>ä</span>hrung und Bodenkunde</em>, 144(4): 428–429. <a href="https://doi.org/10.1002/jpln.19811440414">https://doi.org/10.1002/jpln.19811440414</a>
</div>
<div class="csl-entry">
<strong>Riggers, C., Poeplau, C., Don, A., Bamminger, C., Höper, H. & Dechow, R.</strong> 2019. <span class="nocase">Multi-model ensemble improved the prediction of trends in soil organic carbon stocks in German croplands</span>. <em>Geoderma</em>, 345: 17–30. <a href="https://doi.org/10.1016/j.geoderma.2019.03.014">https://doi.org/10.1016/j.geoderma.2019.03.014</a>
</div>
<div class="csl-entry">
<strong>S., J.D.</strong> 1990. <span class="nocase">The turnover of organic carbon and nitrogen in soil</span>. <em>Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences</em>, 329(1255): 361–368. <a href="https://doi.org/10.1098/rstb.1990.0177">https://doi.org/10.1098/rstb.1990.0177</a>
</div>
<div class="csl-entry">
<strong>Saggar, S., Parshotam, A., Sparling, G.P., Feltham, C.W. & Hart, P.B.S.</strong> 1996. <span class="nocase">14C-labelled ryegrass turnover and residence times in soils varying in clay content and mineralogy</span>. <em>Soil Biology and Biochemistry</em>, 28(12): 1677–1686. <a href="https://doi.org/10.1016/S0038-0717(96)00250-7">https://doi.org/10.1016/S0038-0717(96)00250-7</a>
</div>
<div class="csl-entry">
<strong>Scharlemann, J.P.W., Tanner, E.V.J., Hiederer, R. & Kapos, V.</strong> 2014. <span class="nocase">Global soil carbon: understanding and managing the largest terrestrial carbon pool</span>. <em>Carbon Management</em>, 5(1): 81–91. <a href="https://doi.org/10.4155/cmt.13.77">https://doi.org/10.4155/cmt.13.77</a>
</div>
<div class="csl-entry">
<strong>Schmer, M.R., Jin, V.L., Wienhold, B.J., Varvel, G.E. & Follett, R.F.</strong> 2014. <span class="nocase">Tillage and Residue Management Effects on Soil Carbon and Nitrogen Under Irrigated Continuous Corn</span>. <em>Soil Science Society of America Journal</em>, 78(6): 1987–1996. <a href="https://doi.org/10.2136/sssaj2014.04.0166">https://doi.org/10.2136/sssaj2014.04.0166</a>
</div>
<div class="csl-entry">
<strong>Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S. & Trumbore, S.E.</strong> 2011. <span class="nocase">Persistence of soil organic matter as an ecosystem property</span>. <em>Nature</em>, 478(7367): 49–56. <a href="https://doi.org/10.1038/nature10386">https://doi.org/10.1038/nature10386</a>
</div>
<div class="csl-entry">
<strong>Schulze, E.D., Ciais, P., Luyssaert, S., Schrumpf, M., Janssens, I.A., Thiruchittampalam, B., Theloke, J., Saurat, M., Bringezu, S., Lelieveld, J., Lohila, A., Rebmann, C., Jung, M., Bastviken, D., Abril, G., Grassi, G., Leip, A., Freibauer, A., Kutsch, W., Don, A., Nieschulze, J., Börner, A., Gash, J.H. & Dolman, A.J.</strong> 2010. <span class="nocase">The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes</span>. <em>Global change biology</em>, 16(5): 1451–1469. <a href="https://doi.org/10.1111/j.1365-2486.2010.02215.x">https://doi.org/10.1111/j.1365-2486.2010.02215.x</a>
</div>
<div class="csl-entry">
<strong>Shang, C. & Tiessen, H.</strong> 1998. <span class="nocase">Organic Matter Stabilization in Two Semiarid Tropical Soils: Size, Density, and Magnetic Separations</span>. <em>Soil Science Society of America Journal</em>, 62(5): 1247–1257. <a href="https://doi.org/10.2136/sssaj1998.03615995006200050015x">https://doi.org/10.2136/sssaj1998.03615995006200050015x</a>
</div>
<div class="csl-entry">
<strong>Shirato, Y., Hakamata, T. & Taniyama, I.</strong> 2004. <span class="nocase">Modified rothamsted carbon model for andosols and its validation: changing humus decomposition rate constant with pyrophosphate-extractable Al</span>. <em>Soil Science and Plant Nutrition</em>, 50(1): 149–158. <a href="https://doi.org/10.1080/00380768.2004.10408463">https://doi.org/10.1080/00380768.2004.10408463</a>
</div>
<div class="csl-entry">
<strong>Shirato, Y. & Yokozawa, M.</strong> 2005. <span class="nocase">Applying the Rothamsted Carbon Model for Long-Term Experiments on Japanese Paddy Soils and Modifying It by Simple Tuning of the Decomposition Rate</span>. <em>Soil Science and Plant Nutrition</em>, 51(3): 405–415. <a href="https://doi.org/10.1111/j.1747-0765.2005.tb00046.x">https://doi.org/10.1111/j.1747-0765.2005.tb00046.x</a>
</div>
<div class="csl-entry">
<strong>Sierra, C.A., Müller, M. & Trumbore, S.E.</strong> 2012. <span class="nocase">Models of soil organic matter decomposition: the SoilR package, version 1.0</span>. <em>Geoscientific Model Development</em>, 5(4): 1045–1060. <a href="https://doi.org/10.5194/gmd-5-1045-2012">https://doi.org/10.5194/gmd-5-1045-2012</a>
</div>
<div class="csl-entry">
<strong>Sinclair, T.R. & Seligman, N.G.</strong> 1996. <span class="nocase">Crop Modeling: From Infancy to Maturity</span>. <em>Agronomy Journal</em>, 88(5): 698–704. <a href="https://doi.org/10.2134/agronj1996.00021962008800050004x">https://doi.org/10.2134/agronj1996.00021962008800050004x</a>
</div>
<div class="csl-entry">
<strong>Six, J., Conant, R.T., Paul, E.A. & Paustian, K.</strong> 2002. <span class="nocase">Stabilization Mechanisms of Soil Organic Matter: Implications for C-Saturation of Soils</span>. <em>Plant and Soil</em>, 241(2): 155–176. <a href="https://doi.org/10.1023/A:1016125726789">https://doi.org/10.1023/A:1016125726789</a>
</div>
<div class="csl-entry">
<strong>Smith, J.O., Smith, P., Wattenbach, M., Zaehle, S., Hiederer, R., Jones, R.J.A., Montanarella, L., Rounsevell, M.D.A., Reginster, I. & Ewert, F.</strong> 2005. <span class="nocase">Projected changes in mineral soil carbon of European croplands and grasslands, 1990-2080</span>. <em>Global Change Biology</em>, 11(12): 2141–2152. <a href="https://doi.org/10.1111/j.1365-2486.2005.001075.x">https://doi.org/10.1111/j.1365-2486.2005.001075.x</a>
</div>
<div class="csl-entry">
<strong>Smith, P.</strong> 2004. <span class="nocase">How long before a change in soil organic carbon can be detected?</span> <em>Global Change Biology</em>, 10(11): 1878–1883. <a href="https://doi.org/10.1111/j.1365-2486.2004.00854.x">https://doi.org/10.1111/j.1365-2486.2004.00854.x</a>
</div>
<div class="csl-entry">
<strong>Smith, P., Andrén, O., Brussaard, L., Dangerfield, M., Ekschmitt, K., Lavelle, P. & Tate, K.</strong> 1998. <span class="nocase">Soil biota and global change at the ecosystem level: describing soil biota in mathematical models</span>. <em>Global Change Biology</em>, 4(7): 773–784. <a href="https://doi.org/10.1046/j.1365-2486.1998.00193.x">https://doi.org/10.1046/j.1365-2486.1998.00193.x</a>
</div>
<div class="csl-entry">
<strong>Smith, P. & Falloon, P.D.</strong> 2000. <span class="nocase">Modelling refractory soil organic matter</span>. <em>Biology and Fertility of Soils</em>, 30(5-6): 388–398. <a href="https://doi.org/10.1007/s003740050019">https://doi.org/10.1007/s003740050019</a>
</div>
<div class="csl-entry">
<strong>Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., WATTENBACH, M. & Smith, J.</strong> 2008. <span class="nocase">Greenhouse gas mitigation in agriculture</span>. <em>Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences</em>, 363(1492): 789–813. <a href="https://doi.org/10.1098/rstb.2007.2184">https://doi.org/10.1098/rstb.2007.2184</a>
</div>
<div class="csl-entry">
<strong>Smith, P., Smith, J.U., Franko, U., Kuka, K., Romanenkov, V.A., Shevtsova, L.K., Wattenbach, M., Gottschalk, P., Sirotenko, O.D., Rukhovich, D.I., Koroleva, P.V., Romanenko, I.A. & Lisovoi, N.V.</strong> 2007. <span class="nocase">Changes in mineral soil organic carbon stocks in the croplands of European Russia and the Ukraine, 1990–2070; comparison of three models and implications for climate mitigation</span>. <em>Regional Environmental Change</em>, 7(2): 105–119. <a href="https://doi.org/10.1007/s10113-007-0028-2">https://doi.org/10.1007/s10113-007-0028-2</a>
</div>
<div class="csl-entry">
<strong>Smith, P., Smith, J.U., Powlson, D.S., McGill, W.B., Arah, J.R.M., Chertov, O.G., Coleman, K., Franko, U., Frolking, S., Jenkinson, D.S., Jensen, L.S., Kelly, R.H., Klein-Gunnewiek, H., Komarov, A.S., Li, C., Molina, J.A.E., Mueller, T., Parton, W.J., Thornley, J.H.M. & Whitmore, A.P.</strong> 1997. <span class="nocase">A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments</span>. <em>Geoderma</em>, 81(1-2): 153–225. <a href="https://doi.org/10.1016/S0016-7061(97)00087-6">https://doi.org/10.1016/S0016-7061(97)00087-6</a>
</div>
<div class="csl-entry">
<strong>Smith, P., Soussana, J.-F., Angers, D., Schipper, L., Chenu, C., Rasse, D.P., Batjes, N.H., Egmond, F. van, McNeill, S., Kuhnert, M., Arias-Navarro, C., Olesen, J.E., Chirinda, N., Fornara, D., Wollenberg, E., Álvaro-Fuentes, J., Sanz-Cobena, A. & Klumpp, K.</strong> 2020. <span class="nocase">How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal</span>. <em>Global Change Biology</em>, 26(1): 219–241. <a href="https://doi.org/10.1111/gcb.14815">https://doi.org/10.1111/gcb.14815</a>
</div>
<div class="csl-entry">
<strong>Tifafi, M., Guenet, B. & Hatté, C.</strong> 2018. <span class="nocase">Large Differences in Global and Regional Total Soil Carbon Stock Estimates Based on SoilGrids, HWSD, and NCSCD: Intercomparison and Evaluation Based on Field Data From USA, England, Wales, and France</span>. <em>Global Biogeochemical Cycles</em>, 32(1): 42–56. <a href="https://doi.org/10.1002/2017GB005678">https://doi.org/10.1002/2017GB005678</a>
</div>
<div class="csl-entry">
<strong>Vries, W. de</strong>. 2018. <span class="nocase">Soil carbon 4 per mille: a good initiative but let’s manage not only the soil but also the expectations</span>. <em>Geoderma</em>, 309: 111–112. <a href="https://doi.org/10.1016/j.geoderma.2017.05.023">https://doi.org/10.1016/j.geoderma.2017.05.023</a>
</div>
<div class="csl-entry">
<strong>Weihermüller, L., Graf, A., Herbst, M. & Vereecken, H.</strong> 2013. <span class="nocase">Simple pedotransfer functions to initialize reactive carbon pools of the RothC model</span>. <em>European Journal of Soil Science</em>, 64(5): 567–575. <a href="https://doi.org/10.1111/ejss.12036">https://doi.org/10.1111/ejss.12036</a>
</div>
<div class="csl-entry">
<strong>Wieder, W.R., Grandy, A.S., Kallenbach, C.M. & Bonan, G.B.</strong> 2014. <span class="nocase">Integrating microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model</span>. <em>Biogeosciences</em>, 11(14): 3899–3917. <a href="https://doi.org/10.5194/bg-11-3899-2014">https://doi.org/10.5194/bg-11-3899-2014</a>
</div>
<div class="csl-entry">
<strong>Wiesmeier, M., Poeplau, C., Sierra, C.A., Maier, H., Frühauf, C., Hübner, R., Kühnel, A., Spörlein, P., Geuß, U., Hangen, E., Schilling, B., Lützow, M. von & Kögel-Knabner, I.</strong> 2016. <span class="nocase">Projected loss of soil organic carbon in temperate agricultural soils in the 21(st) century: effects of climate change and carbon input trends</span>. <em>Scientific reports</em>, 6: 32525. <a href="https://doi.org/10.1038/srep32525">https://doi.org/10.1038/srep32525</a>
</div>
<div class="csl-entry">
<strong>Wiesmeier, M., Schad, P., Lützow, M. von, Poeplau, C., Spörlein, P., Geuß, U., Hangen, E., Reischl, A., Schilling, B. & Kögel-Knabner, I.</strong> 2014. <span class="nocase">Quantification of functional soil organic carbon pools for major soil units and land uses in southeast Germany (Bavaria)</span>. <em>Agriculture, Ecosystems <span>&</span> Environment</em>, 185: 208–220. <a href="https://doi.org/10.1016/j.agee.2013.12.028">https://doi.org/10.1016/j.agee.2013.12.028</a>
</div>
<div class="csl-entry">
<strong>Williams, J.R., Dyke, P.T. & Jones, C.A.</strong> 1983. <span class="nocase">Epic - a Model for Assessing the Effects of Erosion on Soil Productivity</span>. <em>In</em> W.K. Lauenroth, G.V. Skogerboe & M. Flug, eds. <em>Analysis of ecological systems</em>, pp. 553–572. Developments in environmental modelling. Armstrong; Oxford, Elsevier Scientific.
</div>
<div class="csl-entry">
<strong>Yigini, Y., Olmedo, G.F., Reiter, S., Baritz, R., Viatkin, K. & Vargas, R.</strong> 2018. <em><span class="nocase">Soil organic carbon mapping cookbook</span></em>. 2nd editio edition. Rome, FAO; FAO.
</div>
</div>
</div>
</div>
</section>
</div>
</div>
</div>
</div>
</div>
<script src="libs/gitbook-2.6.7/js/app.min.js"></script>
<script src="libs/gitbook-2.6.7/js/lunr.js"></script>
<script src="libs/gitbook-2.6.7/js/clipboard.min.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-search.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-sharing.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-fontsettings.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-bookdown.js"></script>
<script src="libs/gitbook-2.6.7/js/jquery.highlight.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-clipboard.js"></script>
<script>
gitbook.require(["gitbook"], function(gitbook) {
gitbook.start({
"sharing": {
"github": false,
"facebook": true,
"twitter": true,
"linkedin": false,
"weibo": false,
"instapaper": false,
"vk": false,
"whatsapp": false,
"all": ["facebook", "twitter", "linkedin", "weibo", "instapaper"]
},
"fontsettings": {
"theme": "white",
"family": "sans",
"size": 2
},
"edit": {
"link": "https://github.com/FAO-GSP/GSOCseq/edit/master/%s",
"text": "Edit"
},
"history": {
"link": null,
"text": null
},
"view": {
"link": null,
"text": null
},
"download": null,
"toc": {
"collapse": "subsection"
},
"search": false
});
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
var src = "true";
if (src === "" || src === "true") src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML";
if (location.protocol !== "file:")
if (/^https?:/.test(src))
src = src.replace(/^https?:/, '');
script.src = src;
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>