forked from joachimvalente/decision-tree-cart
-
Notifications
You must be signed in to change notification settings - Fork 0
/
minimal_cart.py
90 lines (78 loc) · 3.14 KB
/
minimal_cart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
"""Implementation of the CART algorithm to train decision tree classifiers."""
import numpy as np
class Node:
def __init__(self, predicted_class):
self.predicted_class = predicted_class
self.feature_index = 0
self.threshold = 0
self.left = None
self.right = None
class DecisionTreeClassifier:
def __init__(self, max_depth=None):
self.max_depth = max_depth
def fit(self, X, y):
self.n_classes_ = len(set(y))
self.n_features_ = X.shape[1]
self.tree_ = self._grow_tree(X, y)
def predict(self, X):
return [self._predict(inputs) for inputs in X]
def _best_split(self, X, y):
m = y.size
if m <= 1:
return None, None
num_parent = [np.sum(y == c) for c in range(self.n_classes_)]
best_gini = 1.0 - sum((n / m) ** 2 for n in num_parent)
best_idx, best_thr = None, None
for idx in range(self.n_features_):
thresholds, classes = zip(*sorted(zip(X[:, idx], y)))
num_left = [0] * self.n_classes_
num_right = num_parent.copy()
for i in range(1, m):
c = classes[i - 1]
num_left[c] += 1
num_right[c] -= 1
gini_left = 1.0 - sum(
(num_left[x] / i) ** 2 for x in range(self.n_classes_)
)
gini_right = 1.0 - sum(
(num_right[x] / (m - i)) ** 2 for x in range(self.n_classes_)
)
gini = (i * gini_left + (m - i) * gini_right) / m
if thresholds[i] == thresholds[i - 1]:
continue
if gini < best_gini:
best_gini = gini
best_idx = idx
best_thr = (thresholds[i] + thresholds[i - 1]) / 2
return best_idx, best_thr
def _grow_tree(self, X, y, depth=0):
num_samples_per_class = [np.sum(y == i) for i in range(self.n_classes_)]
predicted_class = np.argmax(num_samples_per_class)
node = Node(predicted_class=predicted_class)
if depth < self.max_depth:
idx, thr = self._best_split(X, y)
if idx is not None:
indices_left = X[:, idx] < thr
X_left, y_left = X[indices_left], y[indices_left]
X_right, y_right = X[~indices_left], y[~indices_left]
node.feature_index = idx
node.threshold = thr
node.left = self._grow_tree(X_left, y_left, depth + 1)
node.right = self._grow_tree(X_right, y_right, depth + 1)
return node
def _predict(self, inputs):
node = self.tree_
while node.left:
if inputs[node.feature_index] < node.threshold:
node = node.left
else:
node = node.right
return node.predicted_class
if __name__ == "__main__":
import sys
from sklearn.datasets import load_iris
dataset = load_iris()
X, y = dataset.data, dataset.target # pylint: disable=no-member
clf = DecisionTreeClassifier(max_depth=1)
clf.fit(X, y)
print(clf.predict([[0, 0, 5, 1.5]]))