-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathapu.c
946 lines (900 loc) · 23 KB
/
apu.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
/*
* Copyright (C) 2017 FIX94
*
* This software may be modified and distributed under the terms
* of the MIT license. See the LICENSE file for details.
*/
#include <stdio.h>
#include <stdbool.h>
#include <inttypes.h>
#include <malloc.h>
#include <string.h>
#include "apu.h"
#include "audio.h"
#include "mem.h"
#include "cpu.h"
//Upper bits of FF25 are Left
#define P1_ENABLE_LEFT (1<<4)
#define P2_ENABLE_LEFT (1<<5)
#define WAV_ENABLE_LEFT (1<<6)
#define NOISE_ENABLE_LEFT (1<<7)
//Lower bits of FF25 are Right
#define P1_ENABLE_RIGHT (1<<0)
#define P2_ENABLE_RIGHT (1<<1)
#define WAV_ENABLE_RIGHT (1<<2)
#define NOISE_ENABLE_RIGHT (1<<3)
static uint8_t APU_IO_Reg[0x50];
#if AUDIO_FLOAT
static float lpVal;
static float hpVal;
static const float volLevel[8] = {
0.125f, 0.25f, 0.375f, 0.5f, 0.625f, 0.75f, 0.875f, 1.0f,
};
static float *apuOutBuf;
#else
static int32_t lpVal;
static int32_t hpVal;
static int16_t *apuOutBuf;
#endif
static uint32_t apuBufSize;
static uint32_t apuBufSizeBytes;
static uint32_t curBufPos;
static uint32_t apuFrequency;
static uint16_t freq1;
static uint16_t freq2;
static uint16_t wavFreq;
static uint16_t noiseFreq;
static uint16_t noiseShiftReg;
static uint8_t p1LengthCtr, p2LengthCtr, noiseLengthCtr;
static uint8_t wavLinearCtr;
static uint16_t wavLengthCtr;
static uint8_t wavVolShift;
static uint16_t modeCurCtr;
static uint8_t modePos;
static uint16_t p1freqCtr, p2freqCtr, wavFreqCtr, noiseFreqCtr;
static uint8_t p1Cycle, p2Cycle, wavCycle;
static bool p1haltloop, p2haltloop, wavhaltloop, noisehaltloop;
static bool p1dacenable, p2dacenable, wavdacenable, noisedacenable;
static bool p1enable, p2enable, wavenable, noiseenable;
static bool soundEnabled;
static bool noiseMode1;
static bool wavEqual;
static envelope_t p1Env, p2Env, noiseEnv;
typedef struct _sweep_t {
bool enabled;
bool negative;
bool inNegative;
uint8_t period;
uint8_t divider;
uint8_t shift;
uint16_t pfreq;
} sweep_t;
static sweep_t p1Sweep;
//used externally
const uint8_t pulseSeqs[4][8] = {
{ 0, 1, 0, 0, 0, 0, 0, 0 },
{ 0, 1, 1, 0, 0, 0, 0, 0 },
{ 0, 1, 1, 1, 1, 0, 0, 0 },
{ 1, 0, 0, 1, 1, 1, 1, 1 },
};
static const uint16_t noisePeriodNtsc[8] = {
8, 16, 32, 48, 64, 80, 96, 112,
};
//wav values from http://gbdev.gg8.se/wiki/articles/Gameboy_sound_hardware#Power_Control
static const uint8_t startWavSetDMG[0x10] = {
0x84, 0x40, 0x43, 0xAA, 0x2D, 0x78, 0x92, 0x3C,
0x60, 0x59, 0x59, 0xB0, 0x34, 0xB8, 0x2E, 0xDA,
};
static const uint8_t startWavSetCGB[0x10] = {
0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF,
0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF,
};
//used externally
const uint16_t *noisePeriod;
static const uint8_t *p1seq = pulseSeqs[0],
*p2seq = pulseSeqs[1];
#define M_2_PI 6.28318530717958647692
void apuInitBufs()
{
noisePeriod = noisePeriodNtsc;
//effective frequency for 60.000Hz Video out
//apuFrequency = 526680;
//effective frequency for original LCD Video out
apuFrequency = 262144;
double dt = 1.0/((double)apuFrequency);
//LP at 20kHz
double rc = 1.0/(M_2_PI * 20000.0);
#if AUDIO_FLOAT
lpVal = dt / (rc + dt);
#else
//convert to 32bit int for calcs later
lpVal = (int32_t)((dt / (rc + dt))*32768.0);
#endif
//HP at 20Hz for GB/GBA (150Hz for GBC)
rc = 1.0/(M_2_PI * 20.0);
#if AUDIO_FLOAT
hpVal = rc / (rc + dt);
#else
//convert to 32bit int for calcs later
hpVal = (int32_t)((rc / (rc + dt))*32768.0);
#endif
//keep exactly 1 frame buffer
apuBufSize = 70224/16*2;
#if AUDIO_FLOAT
apuBufSizeBytes = apuBufSize*sizeof(float);
apuOutBuf = (float*)malloc(apuBufSizeBytes);
printf("Audio: 32-bit Float Output\n");
#else
apuBufSizeBytes = apuBufSize*sizeof(int16_t);
apuOutBuf = (int16_t*)malloc(apuBufSizeBytes);
printf("Audio: 16-bit Short Output\n");
#endif
}
void apuDeinitBufs()
{
if(apuOutBuf)
free(apuOutBuf);
apuOutBuf = NULL;
}
#if AUDIO_FLOAT
static float lastHPOutLeft, lastHPOutRight, lastLPOutLeft, lastLPOutRight;
#else
static int32_t lastHPOutLeft, lastHPOutRight, lastLPOutLeft, lastLPOutRight;
#endif
//used externally
uint8_t curP1Out, curP2Out, curWavOut, curNoiseOut;
extern bool emuSkipVsync, emuSkipFrame;
extern bool gbCgbMode;
extern bool gbCgbBootrom;
void apuInit()
{
memset(APU_IO_Reg,0,0x50);
if(gbCgbMode) //essentially 50% duty pulse on CGB
memcpy(APU_IO_Reg+0x30,startWavSetCGB,0x10);
else //relatively random audio pattern on DMG
memcpy(APU_IO_Reg+0x30,startWavSetDMG,0x10);
memset(apuOutBuf, 0, apuBufSizeBytes);
curBufPos = 0;
modeCurCtr = 0;
modePos = 0;
freq1 = 0; freq2 = 0; wavFreq = 0; noiseFreq = 0;
noiseShiftReg = 0;
p1LengthCtr = 0; p2LengthCtr = 0;
noiseLengthCtr = 0; wavLengthCtr = 0;
wavLinearCtr = 0;
p1freqCtr = 0; p2freqCtr = 0; wavFreqCtr = 0, noiseFreqCtr = 0;
p1Cycle = 0; p2Cycle = 0; wavCycle = 0;
wavVolShift = 4; //default
memset(&p1Env,0,sizeof(envelope_t));
memset(&p2Env,0,sizeof(envelope_t));
memset(&noiseEnv,0,sizeof(envelope_t));
memset(&p1Sweep,0,sizeof(sweep_t));
p1haltloop = false; p2haltloop = false;
wavhaltloop = false; noisehaltloop = false;
p1enable = false; p2enable = false;
wavenable = false; noiseenable = false;
p1dacenable = false; p2dacenable = false;
wavdacenable = false; noisedacenable = false;
noiseMode1 = false;
wavEqual = false;
if(gbCgbBootrom)
soundEnabled = false;
else //GB Bootrom
{
soundEnabled = true;
APU_IO_Reg[0x24] = 0x77;
APU_IO_Reg[0x25] = 0xF3;
}
lastHPOutLeft = 0, lastHPOutRight = 0, lastLPOutLeft = 0, lastLPOutRight = 0;
curP1Out = 0, curP2Out = 0, curWavOut = 0, curNoiseOut = 0;
}
bool apuCycle()
{
if(curBufPos == apuBufSize)
{
#ifndef __LIBRETRO__
int updateRes = audioUpdate();
if(updateRes == 0)
{
emuSkipFrame = false;
emuSkipVsync = false;
return false;
}
if(updateRes > 6)
{
emuSkipVsync = true;
emuSkipFrame = true;
}
else
{
emuSkipFrame = false;
if(updateRes > 2)
emuSkipVsync = true;
else
emuSkipVsync = false;
}
#endif
curBufPos = 0;
}
int8_t p1Out = 0, p2Out = 0, noiseOut = 0, wavOut = 0;
int8_t p1OutLeft = 0, p2OutLeft = 0,
wavOutLeft = 0, noiseOutLeft = 0;
int8_t p1OutRight = 0, p2OutRight = 0,
wavOutRight = 0, noiseOutRight = 0;
int8_t apuMasterVolLeft = ((APU_IO_Reg[0x24]>>4)&7), apuMasterVolRight = (APU_IO_Reg[0x24]&7);
if(p1enable && p1dacenable)
{
if(p1seq[p1Cycle])
curP1Out = p1Env.curVol;
else
curP1Out = 0;
//actually audible output
if(freq1 > 0 && freq1 < 0x7FF)
{
//GB/GBC Behavior
//p1Out = (curP1Out<<1)-15;
//GBA Behavior
p1Out = (curP1Out<<1)-p1Env.curVol;
}
}
else
curP1Out = 0;
if(APU_IO_Reg[0x25] & P1_ENABLE_LEFT)
p1OutLeft = p1Out;
if(APU_IO_Reg[0x25] & P1_ENABLE_RIGHT)
p1OutRight = p1Out;
if(p2enable && p2dacenable)
{
if(p2seq[p2Cycle])
curP2Out = p2Env.curVol;
else
curP2Out = 0;
//actually audible output
if(freq2 > 0 && freq2 < 0x7FF)
{
//GB/GBC Behavior
//p2Out = (curP2Out<<1)-15;
//GBA Behavior
p2Out = (curP2Out<<1)-p2Env.curVol;
}
}
else
curP2Out = 0;
if(APU_IO_Reg[0x25] & P2_ENABLE_LEFT)
p2OutLeft = p2Out;
if(APU_IO_Reg[0x25] & P2_ENABLE_RIGHT)
p2OutRight = p2Out;
if(wavenable && wavdacenable)
{
curWavOut = APU_IO_Reg[0x30+(wavCycle>>1)];
if((wavCycle&1)==0)
curWavOut >>= 4;
else
curWavOut &= 0xF;
curWavOut >>= wavVolShift;
//actually audible output
if((wavFreq > 0 && wavFreq < 0x7FF) || wavEqual)
wavOut = (curWavOut<<1)-15;
}
else
curWavOut = 0;
if(APU_IO_Reg[0x25] & WAV_ENABLE_LEFT)
wavOutLeft = wavOut;
if(APU_IO_Reg[0x25] & WAV_ENABLE_RIGHT)
wavOutRight = wavOut;
if(noiseenable && noisedacenable)
{
if((noiseShiftReg&1) == 0)
curNoiseOut = noiseEnv.curVol;
else
curNoiseOut = 0;
//actually audible output
if(noiseFreq > 0)
{
//GB/GBC Behavior
//noiseOut = (curNoiseOut<<1)-15;
//GBA Behavior
noiseOut = (curNoiseOut<<1)-noiseEnv.curVol;
}
}
else
curNoiseOut = 0;
if(APU_IO_Reg[0x25] & NOISE_ENABLE_LEFT)
noiseOutLeft = noiseOut;
if(APU_IO_Reg[0x25] & NOISE_ENABLE_RIGHT)
noiseOutRight = noiseOut;
#if AUDIO_FLOAT
//gen output Left
float curInLeft = ((float)(p1OutLeft + p2OutLeft + wavOutLeft + noiseOutLeft))*volLevel[apuMasterVolLeft]/85.333333f;
float curLPOutLeft = lastLPOutLeft+(lpVal*(curInLeft-lastLPOutLeft));
float curHPOutLeft = hpVal*(lastHPOutLeft+lastLPOutLeft-curLPOutLeft);
//gen output Right
float curInRight = ((float)(p1OutRight + p2OutRight + wavOutRight + noiseOutRight))*volLevel[apuMasterVolRight]/85.333333f;
float curLPOutRight = lastLPOutRight+(lpVal*(curInRight-lastLPOutRight));
float curHPOutRight = hpVal*(lastHPOutRight+lastLPOutRight-curLPOutRight);
//set output Left
apuOutBuf[curBufPos++] = ((soundEnabled)?curHPOutLeft:0);
//set output Right
apuOutBuf[curBufPos++] = ((soundEnabled)?curHPOutRight:0);
//save HP and LP Left
lastLPOutLeft = curLPOutLeft;
lastHPOutLeft = curHPOutLeft;
//save HP and LP Right
lastLPOutRight = curLPOutRight;
lastHPOutRight = curHPOutRight;
#else
int32_t curIn, curOut;
//gen output Left
curIn = (p1OutLeft + p2OutLeft + wavOutLeft + noiseOutLeft)*(apuMasterVolLeft+1)*48;
curOut = lastLPOutLeft+((lpVal*(curIn-lastLPOutLeft))>>15); //Set Left Lowpass Output
curIn = (lastHPOutLeft+lastLPOutLeft-curOut); //Set Left Highpass Input
curIn += (curIn>>31)&1; //Add Sign Bit for proper Downshift later
lastLPOutLeft = curOut; //Save Left Lowpass Output
curOut = (hpVal*curIn)>>15; //Set Left Highpass Output
lastHPOutLeft = curOut; //Save Left Highpass Output
//Save Clipped Left Highpass Output
apuOutBuf[curBufPos++] = ((soundEnabled)?((curOut > 32767)?(32767):((curOut < -32768)?(-32768):curOut)):0);
//gen output Right
curIn = (p1OutRight + p2OutRight + wavOutRight + noiseOutRight)*(apuMasterVolRight+1)*48;
curOut = lastLPOutRight+((lpVal*(curIn-lastLPOutRight))>>15); //Set Right Lowpass Output
curIn = (lastHPOutRight+lastLPOutRight-curOut); //Set Right Highpass Input
curIn += (curIn>>31)&1; //Add Sign Bit for proper Downshift later
lastLPOutRight = curOut; //Save Right Lowpass Output
curOut = (hpVal*curIn)>>15; //Set Right Highpass Output
lastHPOutRight = curOut; //Save Right Highpass Output
//Save Clipped Right Highpass Output
apuOutBuf[curBufPos++] = ((soundEnabled)?((curOut > 32767)?(32767):((curOut < -32768)?(-32768):curOut)):0);
#endif
return true;
}
#ifdef __LIBRETRO__
void audioFrameEnd(int samples);
void apuFrameEnd()
{
audioFrameEnd(curBufPos>>1);
curBufPos = 0;
}
#endif
void doEnvelopeLogic(envelope_t *env)
{
if(env->divider == 0)
{
if(env->period)
{
if(env->modeadd)
{
if(env->curVol < 15)
env->curVol++;
}
else
{
if(env->curVol > 0)
env->curVol--;
}
}
//period 0 is actually period 8!
env->divider = (env->period-1)&7;
}
else
env->divider--;
}
void sweepUpdateFreq(sweep_t *sw, uint16_t *freq, bool update)
{
if(!sw->enabled)
return;
//printf("%i\n", *freq);
uint16_t inFreq = sw->pfreq;
uint16_t shiftVal = (inFreq >> sw->shift);
if(sw->negative)
{
sw->inNegative = true;
inFreq -= shiftVal;
}
else
inFreq += shiftVal;
if(inFreq <= 0x7FF)
{
if(sw->enabled && sw->shift && sw->period && update)
{
*freq = inFreq;
sw->pfreq = inFreq;
}
}
else
{
//printf("Freq disabled\n");
p1enable = false;
}
}
void doSweepLogic(sweep_t *sw, uint16_t *freq)
{
if(sw->divider == 0)
{
//printf("Divider 0\n");
if(sw->period)
{
sweepUpdateFreq(sw, freq, true);
//gameboy checks a SECOND time after updating...
uint16_t inFreq = sw->pfreq;
uint16_t shiftVal = (inFreq >> sw->shift);
if(sw->negative)
inFreq -= shiftVal;
else
inFreq += shiftVal;
if(inFreq > 0x7FF)
{
//printf("Freq disabled\n");
p1enable = false;
}
}
//period 0 is actually period 8!
sw->divider = (sw->period-1)&7;
}
else
sw->divider--;
}
void apuClockA()
{
//printf("Len clock\n");
if(p1LengthCtr && !p1haltloop)
{
p1LengthCtr--;
if(p1LengthCtr == 0)
p1enable = false;
}
if(p2LengthCtr && !p2haltloop)
{
p2LengthCtr--;
if(p2LengthCtr == 0)
p2enable = false;
}
if(wavLengthCtr && !wavhaltloop)
{
wavLengthCtr--;
if(wavLengthCtr == 0)
wavenable = false;
}
if(noiseLengthCtr && !noisehaltloop)
{
noiseLengthCtr--;
if(noiseLengthCtr == 0)
noiseenable = false;
}
}
void apuClockB()
{
if(p1LengthCtr)
doEnvelopeLogic(&p1Env);
if(p2LengthCtr)
doEnvelopeLogic(&p2Env);
if(noiseLengthCtr)
doEnvelopeLogic(&noiseEnv);
}
void apuClockTimers()
{
if(modeCurCtr == 0)
{
modePos++;
if(modePos&1)
apuClockA();
if(modePos == 3 || modePos == 7)
{
//printf("sweep clock\n");
if(p1LengthCtr)
doSweepLogic(&p1Sweep, &freq1);
}
if(modePos >= 8)
{
apuClockB();
modePos = 0;
}
modeCurCtr = 8192;
}
if(modeCurCtr)
modeCurCtr--;
if(p1freqCtr == 0)
{
if(freq1)
p1freqCtr = (2048-freq1)*4;
p1Cycle++;
if(p1Cycle >= 8)
p1Cycle = 0;
}
if(p1freqCtr)
p1freqCtr--;
if(p2freqCtr == 0)
{
if(freq2)
p2freqCtr = (2048-freq2)*4;
p2Cycle++;
if(p2Cycle >= 8)
p2Cycle = 0;
}
if(p2freqCtr)
p2freqCtr--;
if(wavFreqCtr == 0)
{
wavFreqCtr = (2048-wavFreq)*2;
wavCycle++;
if(wavCycle >= 32)
wavCycle = 0;
}
if(wavFreqCtr)
wavFreqCtr--;
if(noiseFreqCtr == 0)
{
noiseFreqCtr = noiseFreq;
uint8_t cmpRes = (noiseShiftReg&1)^((noiseShiftReg>>1)&1);
noiseShiftReg >>= 1;
noiseShiftReg |= cmpRes << (noiseMode1 ? 6 : 14);
}
if(noiseFreqCtr)
noiseFreqCtr--;
}
void apuSetReg8(uint16_t addr, uint8_t val)
{
uint8_t reg = addr&0xFF;
//printf("APU set %02x %02x\n", reg, val);
if(reg == 0x26)
{
bool wasEnabled = soundEnabled;
soundEnabled = (val&0x80)!=0;
if(!soundEnabled)
{
// FULL reset of nearly every reg
memset(APU_IO_Reg,0,0x30);
// except for the wav buffer
memset(APU_IO_Reg+0x40,0,0x10);
memset(&p1Env,0,sizeof(envelope_t));
memset(&p2Env,0,sizeof(envelope_t));
memset(&noiseEnv,0,sizeof(envelope_t));
memset(&p1Sweep,0,sizeof(sweep_t));
p1LengthCtr = 0; p2LengthCtr = 0;
wavLengthCtr = 0; noiseLengthCtr = 0;
p1enable = false; p2enable = false;
wavenable = false; noiseenable = false;
p1dacenable = false; p2dacenable = false;
wavdacenable = false; noisedacenable = false;
freq1 = 0; freq2 = 0; wavFreq = 0; noiseFreq = 0;
wavVolShift = 4; //default
}
else
{
APU_IO_Reg[0x26] = val;
//on sound powerup, reset frame sequencer
if(!wasEnabled)
{
modeCurCtr = 8192;
modePos = 0;
}
}
return;
}
//even if sound off, still update wav buffer
else if(reg >= 0x30 && reg < 0x40)
{
if(wavenable)
APU_IO_Reg[0x30+(wavCycle>>1)] = val;
else
APU_IO_Reg[reg] = val;
//allow for manual wav inputs if all wav inputs are equal
wavEqual = ((*(uint32_t*)(APU_IO_Reg+0x30) == *(uint32_t*)(APU_IO_Reg+0x34)) &&
(*(uint32_t*)(APU_IO_Reg+0x34) == *(uint32_t*)(APU_IO_Reg+0x38)) &&
(*(uint32_t*)(APU_IO_Reg+0x38) == *(uint32_t*)(APU_IO_Reg+0x3C)) );
return;
}
//dont even bother with the switch if sound is off
else if(!soundEnabled)
return;
bool p1prevhaltloop, p2prevhaltloop,
wavprevhaltloop, noiseprevhaltloop;
APU_IO_Reg[reg] = val;
switch(reg)
{
case 0x10:
//printf("P1 sweep %02x\n", val);
p1Sweep.shift = val&7;
p1Sweep.period = (val>>4)&7;
p1Sweep.negative = ((val&0x8) != 0);
if(p1Sweep.inNegative && !p1Sweep.negative)
p1enable = false;
break;
case 0x11:
p1seq = pulseSeqs[val>>6];
p1LengthCtr = 64-(val&0x3F);
break;
case 0x12:
p1Env.vol = (val>>4)&0xF;
p1Env.modeadd = (val&8)!=0;
if(p1Env.modeadd && p1Env.period == 0 && (val&7) == 0)
{
//"Zombie" Mode
p1Env.curVol++;
p1Env.curVol &= 0xF;
}
p1dacenable = (p1Env.modeadd || p1Env.vol);
if(!p1dacenable)
p1enable = false;
p1Env.period = val&7;
break;
case 0x13:
freq1 = ((freq1&~0xFF) | val);
//printf("P1 new freq %04x\n", freq1);
break;
case 0x14:
p1prevhaltloop = p1haltloop;
p1haltloop = ((val&(1<<6)) == 0);
freq1 = (freq1&0xFF) | ((val&7)<<8);
//if length was previously frozen and we are in
//an odd frame sequence, clock length right now
if(p1prevhaltloop && !p1haltloop && p1LengthCtr && (modePos&1))
{
p1LengthCtr--;
//disable channel immediately if length
//reached 0 from this extra clock
if(p1LengthCtr == 0)
p1enable = false;
}
if(val&(1<<7))
{
if(p1dacenable)
p1enable = true;
if(p1LengthCtr == 0)
{
p1LengthCtr = 64;
//if length enabled and we are in an odd frame
//sequence, subtract one from newly set clock length
if(!p1haltloop && (modePos&1))
p1LengthCtr--;
}
//trigger reloads frequency timers
p1Cycle = 0;
if(freq1)
p1freqCtr = (2048-freq1)*4;
//trigger resets env volume
p1Env.curVol = p1Env.vol;
//period 0 is actually period 8!
p1Env.divider = (p1Env.period-1)&7;
//trigger used to enable/disable sweep
if(p1Sweep.period || p1Sweep.shift)
p1Sweep.enabled = true;
else
p1Sweep.enabled = false;
//trigger also resets divider, neg mode and frequency
p1Sweep.inNegative = false;
p1Sweep.pfreq = freq1;
//period 0 is actually period 8!
p1Sweep.divider = (p1Sweep.period-1)&7;
//if sweep shift>0, pre-calc frequency
if(p1Sweep.shift)
sweepUpdateFreq(&p1Sweep, &freq1, false);
}
//printf("P1 new freq %04x\n", freq1);
break;
case 0x16:
p2seq = pulseSeqs[val>>6];
p2LengthCtr = 64-(val&0x3F);
break;
case 0x17:
p2Env.vol = (val>>4)&0xF;
p2Env.modeadd = (val&8)!=0;
if(p2Env.modeadd && p2Env.period == 0 && (val&7) == 0)
{
//"Zombie" Mode
p2Env.curVol++;
p2Env.curVol &= 0xF;
}
p2dacenable = (p2Env.modeadd || p2Env.vol);
if(!p2dacenable)
p2enable = false;
p2Env.period = val&7;
break;
case 0x18:
freq2 = ((freq2&~0xFF) | val);
//printf("P2 new freq %04x\n", freq2);
break;
case 0x19:
p2prevhaltloop = p2haltloop;
p2haltloop = ((val&(1<<6)) == 0);
freq2 = (freq2&0xFF) | ((val&7)<<8);
//if length was previously frozen and we are in
//an odd frame sequence, clock length right now
if(p2prevhaltloop && !p2haltloop && p2LengthCtr && (modePos&1))
{
p2LengthCtr--;
//disable channel immediately if length
//reached 0 from this extra clock
if(p2LengthCtr == 0)
p2enable = false;
}
if(val&(1<<7))
{
if(p2dacenable)
p2enable = true;
if(p2LengthCtr == 0)
{
p2LengthCtr = 64;
//if length enabled and we are in an odd frame
//sequence, subtract one from newly set clock length
if(!p2haltloop && (modePos&1))
p2LengthCtr--;
}
//trigger reloads frequency timers
p2Cycle = 0;
if(freq2)
p2freqCtr = (2048-freq2)*4;
//trigger resets env volume
p2Env.curVol = p2Env.vol;
//period 0 is actually period 8!
p2Env.divider = (p2Env.period-1)&7;
}
//printf("P2 new freq %04x\n", freq2);
break;
case 0x1A:
wavdacenable = ((val&0x80)!=0);
if(!wavdacenable)
wavenable = false;
break;
case 0x1B:
wavLengthCtr = 256-val;
break;
case 0x1C:
//printf("wavVolShift %i\n", (val>>5)&3);
switch((val>>5)&3)
{
case 0:
wavVolShift=4;
break;
case 1:
wavVolShift=0;
break;
case 2:
wavVolShift=1;
break;
case 3:
wavVolShift=2;
break;
}
break;
case 0x1D:
wavFreq = ((wavFreq&~0xFF) | val);
//printf("wav new freq %04x\n", wavFreq);
break;
case 0x1E:
wavprevhaltloop = wavhaltloop;
wavhaltloop = ((val&(1<<6)) == 0);
wavFreq = (wavFreq&0xFF) | ((val&7)<<8);
//if length was previously frozen and we are in
//an odd frame sequence, clock length right now
if(wavprevhaltloop && !wavhaltloop && wavLengthCtr && (modePos&1))
{
wavLengthCtr--;
//disable channel immediately if length
//reached 0 from this extra clock
if(wavLengthCtr == 0)
wavenable = false;
}
if(val&(1<<7))
{
if(wavdacenable)
wavenable = true;
if(wavLengthCtr == 0)
{
wavLengthCtr = 256;
//if length enabled and we are in an odd frame
//sequence, subtract one from newly set clock length
if(!wavhaltloop && (modePos&1))
wavLengthCtr--;
}
//trigger reloads frequency timers
wavCycle = 0;
//not sure why +4 needed to sync initally,
//probably because of sample buffer byte
wavFreqCtr = ((2048-wavFreq)*2)+4;
}
//printf("wav new freq %04x\n", wavFreq);
break;
case 0x20:
noiseLengthCtr = 64-(val&0x3F);
break;
case 0x21:
noiseEnv.vol = (val>>4)&0xF;
noiseEnv.modeadd = (val&8)!=0;
if(noiseEnv.modeadd && noiseEnv.period == 0 && (val&7) == 0)
{
//"Zombie" Mode
noiseEnv.curVol++;
noiseEnv.curVol &= 0xF;
}
noisedacenable = (noiseEnv.modeadd || noiseEnv.vol);
if(!noisedacenable)
noiseenable = false;
noiseEnv.period=val&7;
break;
case 0x22:
if((val>>4)<14)
noiseFreq = noisePeriod[val&0x7]<<(val>>4);
else
noiseFreq = 0;
noiseMode1 = ((val&0x8) != 0);
break;
case 0x23:
noiseprevhaltloop = noisehaltloop;
noisehaltloop = ((val&(1<<6)) == 0);
//if length was previously frozen and we are in
//an odd frame sequence, clock length right now
if(noiseprevhaltloop && !noisehaltloop && noiseLengthCtr && (modePos&1))
{
noiseLengthCtr--;
//disable channel immediately if length
//reached 0 from this extra clock
if(noiseLengthCtr == 0)
noiseenable = false;
}
if(val&(1<<7))
{
if(noisedacenable)
noiseenable = true;
if(noiseLengthCtr == 0)
{
noiseLengthCtr = 64;
//if length enabled and we are in an odd frame
//sequence, subtract one from newly set clock length
if(!noisehaltloop && (modePos&1))
noiseLengthCtr--;
}
//trigger reloads frequency timers
noiseFreqCtr = noiseFreq;
//trigger resets env volume
noiseEnv.curVol = noiseEnv.vol;
//period 0 is actually period 8!
noiseEnv.divider = (noiseEnv.period-1)&7;
//trigger sets all shift reg bits
noiseShiftReg = 0x7FFF;
}
break;
default:
break;
}
}
//write-only bits are always set on reads by the cpu
static const uint8_t apuReadMask[0x20] =
{
0x80, 0x3F, 0x00, 0xFF, 0xBF, 0xFF, 0x3F, 0x00, 0xFF, 0xBF, 0x7F, 0xFF, 0x9F, 0xFF, 0xBF, 0xFF,
0xFF, 0x00, 0x00, 0xBF, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
};
uint8_t apuGetReg8(uint16_t addr)
{
uint8_t reg = addr&0xFF;
//printf("APU get %02x\n", reg);
switch(reg)
{
case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17:
case 0x18: case 0x19: case 0x1A: case 0x1B: case 0x1C: case 0x1D: case 0x1E: case 0x1F:
case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: /*case 0x26:*/ case 0x27:
case 0x28: case 0x29: case 0x2A: case 0x2B: case 0x2C: case 0x2D: case 0x2E: case 0x2F:
return APU_IO_Reg[reg]|apuReadMask[reg-0x10];
case 0x26:
return soundEnabled?((p1enable) | ((p2enable)<<1) | ((wavenable)<<2) | ((noiseenable)<<3)|0xF0):0x70;
case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37:
case 0x38: case 0x39: case 0x3A: case 0x3B: case 0x3C: case 0x3D: case 0x3E: case 0x3F:
if(wavenable)
return APU_IO_Reg[0x30+(wavCycle>>1)];
return APU_IO_Reg[reg];
default:
break;
}
return 0xFF;
}
uint8_t *apuGetBuf()
{
return (uint8_t*)apuOutBuf;
}
uint32_t apuGetBufSize()
{
return apuBufSizeBytes;
}
uint32_t apuGetFrequency()
{
return apuFrequency;
}