You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When trying to run the "Streaming with H2O" example, I observe the error below:
(I also had to change from utils_real_drop.stream import load, download_url, load_jsonl in run_streaming.py).
The latest transformers version that works is 4.33, starting from 4.34, I get issues (4.34 get's this issue).
(venv) root@6770922:/mount/data/kv_press/h2o_heavy_hitter/H2O/h2o_hf# bash ./scripts/streaming/eval.sh h2o
Loading model from lmsys/vicuna-13b-v1.3 ...
tokenizer_config.json: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 727/727 [00:00<00:00, 2.87MB/s]
tokenizer.model: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 500k/500k [00:00<00:00, 88.8MB/s]
special_tokens_map.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 435/435 [00:00<00:00, 1.55MB/s]
You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama.LlamaTokenizer'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565
config.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 567/567 [00:00<00:00, 2.18MB/s]
The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is ignored.
pytorch_model.bin.index.json: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 33.4k/33.4k [00:00<00:00, 62.4MB/s]
pytorch_model-00001-of-00003.bin: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 9.95G/9.95G [01:20<00:00, 123MB/s]
pytorch_model-00002-of-00003.bin: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 9.90G/9.90G [01:31<00:00, 108MB/s]
pytorch_model-00003-of-00003.bin: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6.18G/6.18G [00:48<00:00, 127MB/s]
Downloading shards: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [03:41<00:00, 73.76s/it]
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
H2OKVCache-LayerWise: 48, 2000
Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:11<00:00, 3.81s/it]
generation_config.json: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 132/132 [00:00<00:00, 585kB/s]
Loading data from data/mt_bench.jsonl ...
Downloading https://raw.githubusercontent.com/lm-sys/FastChat/main/fastchat/llm_judge/data/mt_bench/question.jsonl
USER: Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions.
ASSISTANT: Traceback (most recent call last):
File "/mount/data/kv_press/h2o_heavy_hitter/H2O/h2o_hf/run_streaming.py", line 148, in <module>
main(args)
File "/mount/data/kv_press/h2o_heavy_hitter/H2O/h2o_hf/run_streaming.py", line 119, in main
streaming_inference_heavy_hitter(
File "/mount/data/kv_press/h2o_heavy_hitter/venv/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/mount/data/kv_press/h2o_heavy_hitter/H2O/h2o_hf/run_streaming.py", line 94, in streaming_inference_heavy_hitter
past_key_values = greedy_generate(
File "/mount/data/kv_press/h2o_heavy_hitter/venv/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/mount/data/kv_press/h2o_heavy_hitter/H2O/h2o_hf/run_streaming.py", line 21, in greedy_generate
outputs = model(
File "/mount/data/kv_press/h2o_heavy_hitter/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/mount/data/kv_press/h2o_heavy_hitter/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
return forward_call(*args, **kwargs)
File "/mount/data/kv_press/h2o_heavy_hitter/venv/lib/python3.10/site-packages/transformers/models/llama/modeling_llama.py", line 1211, in forward
outputs = self.model(
File "/mount/data/kv_press/h2o_heavy_hitter/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/mount/data/kv_press/h2o_heavy_hitter/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
return forward_call(*args, **kwargs)
File "/mount/data/kv_press/h2o_heavy_hitter/venv/lib/python3.10/site-packages/transformers/models/llama/modeling_llama.py", line 1018, in forward
layer_outputs = decoder_layer(
File "/mount/data/kv_press/h2o_heavy_hitter/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/mount/data/kv_press/h2o_heavy_hitter/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
return forward_call(*args, **kwargs)
File "/mount/data/kv_press/h2o_heavy_hitter/venv/lib/python3.10/site-packages/transformers/models/llama/modeling_llama.py", line 741, in forward
hidden_states, self_attn_weights, present_key_value = self.self_attn(
File "/mount/data/kv_press/h2o_heavy_hitter/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/mount/data/kv_press/h2o_heavy_hitter/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
return forward_call(*args, **kwargs)
TypeError: H2OLlamaAttention_streaming.forward() got an unexpected keyword argument 'cache_position'
The text was updated successfully, but these errors were encountered:
When trying to run the "Streaming with H2O" example, I observe the error below:
(I also had to change
from utils_real_drop.stream import load, download_url, load_jsonl
in run_streaming.py).The latest transformers version that works is 4.33, starting from 4.34, I get issues (4.34 get's this issue).
The text was updated successfully, but these errors were encountered: