-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenalgo.py
158 lines (128 loc) · 5.5 KB
/
Genalgo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
"""Genalgo.py."""
import random
from random import randint
from Tour import Tour
class Genalgo(object):
"""Represents a genetic algorithm that can be applied in steps to data."""
def __init__(self, lx, ly,
limit=100, size=10,
prob_mutation=0.2, tournament_size=5):
"""Initialize objects."""
self.lx = lx
self.ly = ly
self.limit = limit
self.size = size
self.tournament_size = tournament_size
self.prob_mutation = prob_mutation
self.tours = [Tour(self.lx, self.ly) for i in range(0, size)]
def evolve_new_pop(self, iteration):
"""Step algorithm using 'New population' method."""
new_tours = []
# Save best tour
_, best_tuple = self.get_best_tours(self.tours)
best = self.tours[best_tuple[0]]
new_tours.append(best)
for i in range(1, len(self.tours)):
parent1 = self.tournament_selection()
parent2 = self.tournament_selection()
child1, child2 = self.crossover(parent1.cities, parent2.cities)
t = Tour(self.lx, self.ly)
t.set_tour(child1)
new_tours.append(t)
self.tours = new_tours
for i in range(1, len(self.tours)):
self.tours[i] = self.mutate(self.tours[i])
_, best_tuple = self.get_best_tours(self.tours)
best = self.tours[best_tuple[0]]
def evolve_same_pop(self, iteration):
"""Step algorithm using 'Sampe population' method."""
bestTwo = self.get_best_tours(self.tours)
worstTwo = self.get_worst_tours(self.tours)
children1, children2 = self.crossover(self.tours[bestTwo[0][0]].cities,
self.tours[bestTwo[1][0]].cities)
child1 = Tour(self.lx, self.ly)
child2 = Tour(self.lx, self.ly)
child1.set_tour(children1)
child2.set_tour(children2)
if self.tours[worstTwo[0][0]].get_cost() > child1.get_cost():
self.tours[worstTwo[0][0]] = child1
if self.tours[worstTwo[1][0]].get_cost() > child2.get_cost():
self.tours[worstTwo[1][0]] = child2
for i in range(len(self.tours)):
self.tours[i] = self.mutate(self.tours[i])
def crossover(self, parent1, parent2):
"""Evolve to get new population."""
child1 = [-1 for x in range(len(parent1))]
child2 = [-1 for x in range(len(parent2))]
# Used to find ones that weren't duplicates later on
difflist = []
difflist2 = []
count = 0
count2 = 0
if len(parent1) != len(parent2):
print("Trying to crossover two parents of different length")
# Generate random bounds
index1 = randint(0, len(parent1) - 1)
index2 = randint(0, len(parent2) - 1)
if index2 > index1:
for i in range(index1, index2):
child1[i] = parent2[i]
child2[i] = parent1[i]
elif index2 < index1:
for i in range(index2, index1):
child1[i] = parent2[i]
child2[i] = parent1[i]
else:
child1[index1] = parent2[index1]
child2[index1] = parent1[index1]
# Find all the numbers that aren't duplicates from the initial exchange
for i in range(0, len(parent1)):
if parent1[i] not in child1:
difflist.append(parent1[i])
if parent2[i] not in child2:
difflist2.append(parent2[i])
# Adding the non duplicates to the new child in the same order
for i in range(0, len(parent1)):
if child1[i] == -1:
child1[i] = difflist[count]
count += 1
if child2[i] == -1:
child2[i] = difflist2[count2]
count2 += 1
return child1, child2
def get_best_tours(self, tour_list):
"""Determine current best tours (shortest distance)."""
bestTwo = [(-1, 10000), (-1, 10000)]
for i in range(len(tour_list)):
currentCost = tour_list[i].get_cost()
if currentCost < bestTwo[0][1] and currentCost < bestTwo[1][1]:
bestTwo[0] = (bestTwo[1])
bestTwo[1] = (i, currentCost)
elif currentCost < bestTwo[0][1]:
bestTwo[0] = (i, currentCost)
return bestTwo
def get_worst_tours(self, tour_list):
"""Determine current worst tours (longest distance)."""
worstTwo = [(-1, 0), (-1, 0)]
for i in range(len(tour_list)):
currentCost = tour_list[i].get_cost()
if currentCost > worstTwo[0][1] and currentCost > worstTwo[1][1]:
worstTwo[0] = (worstTwo[1])
worstTwo[1] = (i, currentCost)
elif currentCost > worstTwo[0][1]:
worstTwo[0] = (i, currentCost)
return worstTwo
def tournament_selection(self):
"""Select some amount of random tours and get the best from them."""
tour_len = len(self.tours) - 1
vals = [randint(0, tour_len) for x in range(self.tournament_size)]
rand_tours = [self.tours[x] for x in vals]
_, best_tuple = self.get_best_tours(rand_tours)
return self.tours[best_tuple[0]]
def mutate(self, tour):
"""Chance of performing slight random change to tour."""
index1 = randint(0, len(tour.cities) - 1)
index2 = randint(0, len(tour.cities) - 1)
if random.random() < self.prob_mutation:
tour.swap(index1, index2)
return tour