forked from RozDavid/LanguageGroundedSemseg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·206 lines (165 loc) · 7.22 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Change dataloader multiprocess start method to anything not fork
import glob
import logging
import os
import sys
import time
import numpy as np
from pytorch_lightning import Trainer, Callback
from pytorch_lightning.loggers import TensorBoardLogger, WandbLogger
import pytorch_lightning as pl
from pytorch_lightning.plugins import DDPPlugin
import random
import string
# Torch packages
import torch
# Train deps
from config.config import get_config
from lib.utils import load_state_with_same_shape, count_parameters
from lib.dataset import initialize_data_loader
from lib.datasets import load_dataset
from models import load_model, load_wrapper
import MinkowskiEngine as ME
ch = logging.StreamHandler(sys.stdout)
logging.getLogger().setLevel(logging.INFO)
logging.basicConfig(
format=os.uname()[1].split('.')[0] + ' %(asctime)s %(message)s',
datefmt='%m/%d %H:%M:%S',
handlers=[ch])
def randStr(chars = string.ascii_lowercase + string.digits, N=10):
return ''.join(random.choice(chars) for _ in range(N))
class CleanCacheCallback(Callback):
def training_step_end(self, trainer):
torch.cuda.empty_cache()
def on_train_start(self, trainer, pl_module):
torch.cuda.empty_cache()
def on_validation_start(self, trainer, pl_module):
torch.cuda.empty_cache()
def validation_step_end(self, trainer, pl_module):
torch.cuda.empty_cache()
def main():
config = get_config()
if config.is_cuda and not torch.cuda.is_available():
raise Exception("No GPU found")
logging.info('===> Configurations')
dconfig = vars(config)
for k in dconfig:
logging.info(' {}: {}'.format(k, dconfig[k]))
DatasetClass = load_dataset(config.dataset)
logging.info('===> Initializing dataloader')
data_loader = initialize_data_loader(
DatasetClass,
config,
phase=config.train_phase,
num_workers=config.num_workers,
augment_data=True,
shuffle=True,
repeat=True,
batch_size=config.batch_size,
limit_numpoints=config.train_limit_numpoints)
if data_loader.dataset.NUM_IN_CHANNEL is not None:
num_in_channel = data_loader.dataset.NUM_IN_CHANNEL
else:
num_in_channel = 3 # RGB color
num_labels = data_loader.dataset.NUM_LABELS
logging.info('===> Building model')
NetClass = load_model(config.model)
if config.wrapper_type == 'None':
model = NetClass(num_in_channel, num_labels, config)
logging.info('===> Number of trainable parameters: {}: {}'.format(NetClass.__name__,
count_parameters(model)))
else:
wrapper = load_wrapper(config.wrapper_type)
model = wrapper(NetClass, num_in_channel, num_labels, config)
logging.info('===> Number of trainable parameters: {}: {}'.format(
wrapper.__name__ + NetClass.__name__, count_parameters(model)))
# Load weights if available
if not (config.weights == 'None' or config.weights is None):
logging.info('===> Loading weights: ' + config.weights)
state = torch.load(config.weights)
if config.weights_for_inner_model:
model.model.load_state_dict(state['state_dict'])
else:
if config.lenient_weight_loading:
if 'pth' in config.weights: # CSC version of model state
matched_weights = load_state_with_same_shape(model, state['state_dict'], prefix='')
else: # Lightning
matched_weights = load_state_with_same_shape(model, state['state_dict'], prefix='model.')
model_dict = model.state_dict()
model_dict.update(matched_weights)
model.load_state_dict(model_dict)
else:
model.load_state_dict(state['state_dict'])
# Sync bathnorm for multiple GPUs
if config.num_gpu > 1:
model = ME.MinkowskiSyncBatchNorm.convert_sync_batchnorm(model)
log_folder = config.log_dir
num_devices = min(config.num_gpu, torch.cuda.device_count())
logging.info('Starting training with {} GPUs'.format(num_devices))
checkpoint_callbacks = [pl.callbacks.ModelCheckpoint(
dirpath=config.log_dir,
monitor="val_miou",
mode='max',
filename='checkpoint-{val_miou:.2f}-{step}',
save_top_k=1,
every_n_epochs=1)]
# Set wandb project attributes
wandb_id = randStr()
version_num = 0
if config.resume:
directories = glob.glob(config.resume + '/default/*')
versions = [int(dir.split('_')[-1]) for dir in directories]
list_of_ckpts = glob.glob(config.resume + '/*.ckpt')
if len(list_of_ckpts) > 0:
version_num = max(versions) if len(versions) > 0 else 0
ckpt_steps = np.array([int(ckpt.split('=')[1].split('.')[0]) for ckpt in list_of_ckpts])
latest_ckpt = list_of_ckpts[np.argmax(ckpt_steps)]
config.resume = latest_ckpt
state_params = torch.load(config.resume)['hyper_parameters']
if 'wandb_id' in state_params:
wandb_id = state_params['wandb_id']
else:
config.resume = None
print('Resuming: ', config.resume)
config.wandb_id = wandb_id
# Import the correct trainer module
if config.use_embedding_loss and config.use_embedding_loss != 'both':
from lib.train_test.pl_RepresentationTrainer import RepresentationTrainerModule as TrainerModule
# we only have representation losses here
checkpoint_callbacks += [pl.callbacks.ModelCheckpoint(
dirpath=config.log_dir,
monitor="val_loss",
mode='min',
filename='checkpoint-{val_loss:.5f}-{step}',
save_top_k=1,
every_n_epochs=1)]
else:
if 'Classifier' in config.model:
from lib.train_test.pl_ClassifierTrainer import ClassifierTrainerModule as TrainerModule
else:
from lib.train_test.pl_BaselineTrainer import BaselineTrainerModule as TrainerModule
# Init loggers
tensorboard_logger = TensorBoardLogger(log_folder, default_hp_metric=False, log_graph=True, version=version_num)
run_name = config.model + '-' + config.dataset if config.is_train else config.model + "_test"
# Try a few times to avoid init error based on connection
loggers = [tensorboard_logger]
while config.is_train and False:
try:
wandb_logger = WandbLogger(project="lg_semseg", name=run_name, log_model=False, id=config.wandb_id)
loggers += [wandb_logger]
break
except:
print("Retrying WanDB connection...")
time.sleep(10)
trainer = Trainer(max_epochs=config.max_epoch, logger=loggers,
devices=num_devices, accelerator="gpu", strategy=DDPPlugin(find_unused_parameters=True),
num_sanity_val_steps=4, accumulate_grad_batches=1,
callbacks=[*checkpoint_callbacks, CleanCacheCallback()])
pl_module = TrainerModule(model, config, data_loader.dataset)
if config.is_train:
trainer.fit(pl_module, ckpt_path=config.resume)
else:
trainer.test(pl_module, ckpt_path=config.resume)
if __name__ == '__main__':
__spec__ = None
main()