In this example, we show how to finetune the embedder with your data.
- with pip
pip install -U FlagEmbedding[finetune]
- from source
git clone https://github.com/FlagOpen/FlagEmbedding.git
cd FlagEmbedding
pip install .[finetune]
For development, install as editable:
pip install -e .[finetune]
Train data should be a json file, where each line is a dict like this:
{"query": str, "pos": List[str], "neg":List[str], "pos_scores": List[int], "neg_scores": List[int], "prompt": str, "type": str}
query
is the query, and pos
is a list of positive texts, neg
is a list of negative texts. pos_scores
is a list of scores corresponding to the query
and pos
, neg_scores
is a list of scores corresponding to the query
and neg
, if you don't use knowledge distillation, it can be ignored. prompt
is the prompt used for the query, it will cover query_instruction_for_retrieval
. type
is used for bge-en-icl
, it includes normal
, symmetric_class
, symmetric_clustering
, .etc. If you have no negative texts for a query, you can random sample some from the entire corpus as the negatives.
See example_data for more detailed files.
Hard negatives is a widely used method to improve the quality of sentence embedding. You can mine hard negatives following this command:
git clone https://github.com/FlagOpen/FlagEmbedding.git
cd FlagEmbedding/scripts
python hn_mine.py \
--input_file toy_finetune_data.jsonl \
--output_file toy_finetune_data_minedHN.jsonl \
--range_for_sampling 2-200 \
--negative_number 15 \
--use_gpu_for_searching \
--embedder_name_or_path BAAI/bge-base-en-v1.5
input_file
: json data for finetuning. This script will retrieve top-k documents for each query, and random sample negatives from the top-k documents (not including the positive documents).output_file
: path to save JSON data with mined hard negatives for finetuningnegative_number
: the number of sampled negativesrange_for_sampling
: where to sample negative. For example,2-100
means samplingnegative_number
negatives from top2-top200 documents. You can set larger value to reduce the difficulty of negatives (e.g., set it60-300
to sample negatives from top60-300 passages)candidate_pool
: The pool to retrieval. The default value is None, and this script will retrieve from the combination of allneg
ininput_file
. If provided, it should be a jsonl file, each line is a dict with a keytext
. If input a candidate_pool, this script will retrieve negatives from this file.use_gpu_for_searching
: whether to use faiss-gpu to retrieve negatives.search_batch_size
: batch size for searching. Default is 64.embedder_name_or_path
: The name or path to the embedder.embedder_model_class
: Class of the model used for embedding (current options include 'encoder-only-base', 'encoder-only-m3', 'decoder-only-base', 'decoder-only-icl'.). Default is None. For the custom model, you should set this argument.normalize_embeddings
: Set toTrue
to normalize embeddings.pooling_method
: The pooling method for the embedder.use_fp16
: Use FP16 precision for inference.devices
: List of devices used for inference.query_instruction_for_retrieval
,query_instruction_format_for_retrieval
: Instructions and format for query during retrieval.examples_for_task
,examples_instruction_format
: Example tasks and their instructions format. This is only used whenembedder_model_class
is set todecoder-only-icl
.trust_remote_code
: Set toTrue
to trust remote code execution.cache_dir
: Cache directory for models.embedder_batch_size
: Batch sizes for embedding and reranking.embedder_query_max_length
,embedder_passage_max_length
: Maximum length for embedding queries and passages.
Teacher scores can be used for model distillation. You can obtain the scores using the following command:
git clone https://github.com/FlagOpen/FlagEmbedding.git
cd FlagEmbedding/scripts
python add_reranker_score.py \
--input_file toy_finetune_data_minedHN.jsonl \
--output_file toy_finetune_data_score.jsonl \
--reranker_name_or_path BAAI/bge-reranker-v2-m3 \
--devices cuda:0 cuda:1 \
--cache_dir ./cache/model \
--reranker_query_max_length 512 \
--reranker_max_length 1024
input_file
: path to save JSON data with mined hard negatives for finetuningoutput_file
: path to save JSON data with scores for finetuninguse_fp16
: Whether to use fp16 for inference. Default: Truedevices
: Devices to use for inference. Default: None, multiple values allowedtrust_remote_code
: Trust remote code. Default: Falsereranker_name_or_path
: The reranker name or path. Default: Nonereranker_model_class
: The reranker model class. Available classes: ['auto', 'encoder-only-base', 'decoder-only-base', 'decoder-only-layerwise', 'decoder-only-lightweight']. Default: autoreranker_peft_path
: The reranker peft path. Default: Noneuse_bf16
: Whether to use bf16 for inference. Default: Falsequery_instruction_for_rerank
: Instruction for query. Default: Nonequery_instruction_format_for_rerank
: Format for query instruction. Default: {{}{}}passage_instruction_for_rerank
: Instruction for passage. Default: Nonepassage_instruction_format_for_rerank
: Format for passage instruction. Default: {{}{}}cache_dir
: Cache directory for models. Default: Nonereranker_batch_size
: Batch size for inference. Default: 3000reranker_query_max_length
: Max length for reranking queries. Default: Nonereranker_max_length
: Max length for reranking. Default: 512normalize
: Whether to normalize the reranking scores. Default: Falseprompt
: The prompt for the reranker. Default: Nonecutoff_layers
: The output layers of layerwise/lightweight reranker. Default: Nonecompress_ratio
: The compress ratio of lightweight reranker. Default: 1compress_layers
: The compress layers of lightweight reranker. Default: None, multiple values allowed
Detailed examples of various fine-tuning can be found in the bash files located in the corresponding folders. Here, we simply provide the training methods for the standard model
, bge-m3
, bge-multilingual-gemma2
and bge-en-icl
.
Here are some import arguments:
model_name_or_path
: The model checkpoint for initialization.config_name
: Pretrained config name or path if not the same as model_name.tokenizer_name
: Pretrained tokenizer name or path if not the same as model_name.cache_dir
: Where do you want to store the pre-trained models downloaded from s3.trust_remote_code
: Trust remote codetoken
: The token to use when accessing the model.train_data
: One or more paths to training data.query: str
,pos: List[str]
,neg: List[str]
are required in the training data. Argument type: multiple.cache_path
: Where do you want to store the cached data.train_group_size
: (No metadata provided)query_max_len
: The maximum total input sequence length after tokenization for passage. Sequences longer than this will be truncated.passage_max_len
: The maximum total input sequence length after tokenization for passage. Sequences longer than this will be truncated.pad_to_multiple_of
: If set will pad the sequence to be a multiple of the provided value.max_example_num_per_dataset
: The max number of examples for each dataset.query_instruction_for_retrieval
: Instruction for query.query_instruction_format
: Format for query instruction.knowledge_distillation
: Use knowledge distillation whenpos_scores: List[float]
andneg_scores: List[float]
are in features of training data.passage_instruction_for_retrieval
: Instruction for passage.passage_instruction_format
: Format for passage instruction.shuffle_ratio
: The ratio of shuffling the text.same_dataset_within_batch
: All samples in the same batch comes from the same dataset.small_threshold
: The threshold of small dataset. All small dataset in the same directory will be merged into one dataset.drop_threshold
: The threshold for dropping merged small dataset. If the number of examples in the merged small dataset is less than this threshold, it will be dropped.negatives_cross_device
: Share negatives across devices.temperature
: Temperature used for similarity score.fix_position_embedding
: Freeze the parameters of position embeddings.sentence_pooling_method
: The pooling method. Available options: cls, mean, last_token. Default: cls.normalize_embeddings
: Whether to normalize the embeddings.sub_batch_size
: Sub batch size for training.kd_loss_type
: The loss type for knowledge distillation. Available options: kl_div, m3_kd_loss. Default: kl_div.
torchrun --nproc_per_node 2 \
-m FlagEmbedding.finetune.embedder.encoder_only.base \
--model_name_or_path BAAI/bge-large-en-v1.5 \
--cache_dir ./cache/model \
--train_data ./example_data/retrieval \
./example_data/sts/sts.jsonl \
./example_data/classification-no_in_batch_neg \
./example_data/clustering-no_in_batch_neg \
--cache_path ./cache/data \
--train_group_size 8 \
--query_max_len 512 \
--passage_max_len 512 \
--pad_to_multiple_of 8 \
--query_instruction_for_retrieval 'Represent this sentence for searching relevant passages: ' \
--query_instruction_format '{}{}' \
--knowledge_distillation False \
--output_dir ./test_encoder_only_base_bge-large-en-v1.5 \
--overwrite_output_dir \
--learning_rate 1e-5 \
--fp16 \
--num_train_epochs 2 \
--per_device_train_batch_size 2 \
--dataloader_drop_last True \
--warmup_ratio 0.1 \
--gradient_checkpointing \
--deepspeed ../ds_stage0.json \
--logging_steps 1 \
--save_steps 1000 \
--negatives_cross_device \
--temperature 0.02 \
--sentence_pooling_method cls \
--normalize_embeddings True \
--kd_loss_type kl_div
torchrun --nproc_per_node 2 \
-m FlagEmbedding.finetune.embedder.encoder_only.m3 \
--model_name_or_path BAAI/bge-m3 \
--cache_dir ./cache/model \
--train_data ./example_data/retrieval \
./example_data/sts/sts.jsonl \
./example_data/classification-no_in_batch_neg \
./example_data/clustering-no_in_batch_neg \
--cache_path ./cache/data \
--train_group_size 8 \
--query_max_len 512 \
--passage_max_len 512 \
--pad_to_multiple_of 8 \
--knowledge_distillation True \
--same_dataset_within_batch True \
--small_threshold 0 \
--drop_threshold 0 \
--output_dir ./test_encoder_only_m3_bge-m3_sd \
--overwrite_output_dir \
--learning_rate 1e-5 \
--fp16 \
--num_train_epochs 2 \
--per_device_train_batch_size 2 \
--dataloader_drop_last True \
--warmup_ratio 0.1 \
--gradient_checkpointing \
--deepspeed ../ds_stage0.json \
--logging_steps 1 \
--save_steps 1000 \
--negatives_cross_device \
--temperature 0.02 \
--sentence_pooling_method cls \
--normalize_embeddings True \
--kd_loss_type m3_kd_loss \
--unified_finetuning True \
--use_self_distill True \
--fix_encoder False \
--self_distill_start_step 0
Here are some new arguments:
colbert_dim
: Dim of colbert linearunified_finetuning
: Use unify fine-tuninguse_self_distill
: Use self-distill when using unify fine-tuningfix_encoder
: Freeze the parameters of encoderself_distill_start_step
: Num of step when using self-distill
torchrun --nproc_per_node 2 \
-m FlagEmbedding.finetune.embedder.decoder_only.base \
--model_name_or_path BAAI/bge-multilingual-gemma2 \
--cache_dir ./cache/model \
--use_lora True \
--lora_rank 32 \
--lora_alpha 64 \
--target_modules q_proj k_proj v_proj o_proj gate_proj down_proj up_proj \
--additional_special_tokens '<instruct>' '<query>' \
--save_merged_lora_model True \
--train_data ./example_data/retrieval \
./example_data/sts/sts.jsonl \
./example_data/classification-no_in_batch_neg \
./example_data/clustering-no_in_batch_neg \
--cache_path ./cache/data \
--train_group_size 8 \
--query_max_len 512 \
--passage_max_len 512 \
--pad_to_multiple_of 8 \
--query_instruction_for_retrieval 'Given a query, retrieve passages that are relevant to the query.' \
--query_instruction_format '<instruct>{}\n<query>{}' \
--knowledge_distillation True \
--same_dataset_within_batch True \
--small_threshold 0 \
--drop_threshold 0 \
--output_dir ./test_decoder_only_base_bge-multilingual-gemma2_sd \
--overwrite_output_dir \
--learning_rate 1e-4 \
--fp16 \
--num_train_epochs 1 \
--per_device_train_batch_size 2 \
--dataloader_drop_last True \
--warmup_ratio 0.1 \
--gradient_checkpointing \
--deepspeed ../ds_stage1.json \
--logging_steps 1 \
--save_steps 1000 \
--negatives_cross_device \
--temperature 0.02 \
--sentence_pooling_method last_token \
--normalize_embeddings True \
--kd_loss_type m3_kd_loss
Here are some new arguments:
peft_model_path
: The peft model checkpoint for initialization.use_lora
: If passed, will use LORA (low-rank parameter-efficient training) to train the model.lora_rank
: The rank of lora.lora_alpha
: The alpha parameter of lora.lora_dropout
: The dropout rate of lora modules.target_modules
: The target modules to apply LORA.use_flash_attn
: If passed, will use flash attention to train the model.use_slow_tokenizer
: If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).additional_special_tokens
: Additional special tokens.save_merged_lora_model
: If passed, will merge the lora modules and save the entire model.
torchrun --nproc_per_node 2 \
-m FlagEmbedding.finetune.embedder.decoder_only.icl \
--model_name_or_path BAAI/bge-en-icl \
--cache_dir ./cache/model \
--use_lora True \
--lora_rank 32 \
--lora_alpha 64 \
--target_modules q_proj k_proj v_proj o_proj gate_proj down_proj up_proj \
--additional_special_tokens '<instruct>' '<query>' '<response>' \
--save_merged_lora_model True \
--train_data ./example_data/retrieval \
./example_data/sts/sts.jsonl \
./example_data/classification-no_in_batch_neg \
./example_data/clustering-no_in_batch_neg \
--cache_path ./cache/data \
--train_group_size 8 \
--query_max_len 2048 \
--passage_max_len 512 \
--pad_to_multiple_of 8 \
--query_instruction_for_retrieval 'Given a query, retrieve passages that are relevant to the query.' \
--query_instruction_format '<instruct>{}\n<query>{}' \
--knowledge_distillation True \
--same_dataset_within_batch True \
--small_threshold 0 \
--drop_threshold 0 \
--example_query_max_len 256 \
--example_passage_max_len 256 \
--retrieval_use_examples True \
--icl_suffix_str '\n<response>' \
--output_dir ./test_decoder_only_base_bge-en-icl_sd \
--overwrite_output_dir \
--learning_rate 1e-4 \
--fp16 \
--num_train_epochs 1 \
--per_device_train_batch_size 2 \
--dataloader_drop_last True \
--warmup_ratio 0.1 \
--gradient_checkpointing \
--deepspeed ../ds_stage1.json \
--logging_steps 1 \
--save_steps 1000 \
--negatives_cross_device \
--temperature 0.02 \
--sentence_pooling_method last_token \
--normalize_embeddings True \
--kd_loss_type kl_div
Here are some new arguments:
peft_model_path
: The peft model checkpoint for initialization.use_lora
: If passed, will use LORA (low-rank parameter-efficient training) to train the model.lora_rank
: The rank of LORA.lora_alpha
: The alpha parameter of LORA.lora_dropout
: The dropout rate of LORA modules.target_modules
: The target modules to apply LORA.use_flash_attn
: If passed, will use flash attention to train the model.use_slow_tokenizer
: If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).from_peft
(no metadata provided)modules_to_save
(no metadata provided)raw_peft
(no metadata provided)additional_special_tokens
: additional special tokenssave_merged_lora_model
: If passed, will merge the LORA modules and save the entire model.example_query_max_len
: The max length of example query.example_passage_max_len
: The max length of example passage.retrieval_use_examples
: If passed, will use examples for retrieval.icl_suffix_str
: The suffix string for ICL dataset.