In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on ChatGLM3 models on Intel GPUs. For illustration purposes, we utilize the THUDM/chatglm3-6b as a reference ChatGLM3 model.
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to here for more information.
In the example generate.py, we show a basic use case for a ChatGLM3 model to predict the next N tokens using generate()
API, with BigDL-LLM INT4 optimizations on Intel GPUs.
We suggest using conda to manage environment:
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
# you can install specific ipex/torch version for your need
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
source /opt/intel/oneapi/setvars.sh
For optimal performance on Arc, it is recommended to set several environment variables.
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH
: argument defining the huggingface repo id for the ChatGLM3 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'THUDM/chatglm3-6b'
.--prompt PROMPT
: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be'AI是什么?'
.--n-predict N_PREDICT
: argument defining the max number of tokens to predict. It is default to be32
.
Inference time: xxxx s
-------------------- Prompt --------------------
<|user|>
AI是什么?
<|assistant|>
-------------------- Output --------------------
[gMASK]sop <|user|>
AI是什么?
<|assistant|> AI是人工智能(Artificial Intelligence)的缩写,指通过计算机程序或机器学习算法来模拟、延伸或扩展人类智能的技术。AI旨在
Inference time: xxxx s
-------------------- Prompt --------------------
<|user|>
What is AI?
<|assistant|>
-------------------- Output --------------------
[gMASK]sop <|user|>
What is AI?
<|assistant|>
AI stands for Artificial Intelligence. It refers to the development of computer systems or machines that can perform tasks that would normally require human intelligence, such as recognizing patterns
In the example streamchat.py, we show a basic use case for a ChatGLM3 model to stream chat, with BigDL-LLM INT4 optimizations.
We suggest using conda to manage environment:
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
# you can install specific ipex/torch version for your need
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
source /opt/intel/oneapi/setvars.sh
For optimal performance on Arc, it is recommended to set several environment variables.
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
Stream Chat using stream_chat()
API:
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION
Chat using chat()
API:
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION --disable-stream
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH
: argument defining the huggingface repo id for the ChatGLM3 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'THUDM/chatglm3-6b'
.--question QUESTION
: argument defining the question to ask. It is default to be"晚上睡不着应该怎么办"
.--disable-stream
: argument defining whether to stream chat. If include--disable-stream
when running the script, the stream chat is disabled andchat()
API is used.