-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmodel.py
335 lines (277 loc) · 11.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import torch
import torch.nn as nn
from torch.nn import Parameter
import torch.nn.functional as F
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Position Attention Module
class PAM_Module(nn.Module):
""" Position attention module"""
# Ref from SAGAN
def __init__(self, in_dim=8):
super(PAM_Module, self).__init__()
self.chanel_in = in_dim
self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
self.gamma = Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
"""
inputs :
x : input feature maps( B X C X H X W)
returns :
out : attention value + input feature
attention: B X (HxW) X (HxW)
"""
m_batchsize, C, height, width = x.size()
proj_query = self.query_conv(x).view(m_batchsize, -1, width * height).permute(0, 2, 1)
proj_key = self.key_conv(x).view(m_batchsize, -1, width * height)
energy = torch.bmm(proj_query, proj_key)
attention = self.softmax(energy)
proj_value = self.value_conv(x).view(m_batchsize, -1, width * height)
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
out = out.view(m_batchsize, C, height, width)
out = self.gamma * out
return out
# Channel Attention Module
class CAM_Module(nn.Module):
""" Channel attention module"""
def __init__(self, in_dim=8):
super(CAM_Module, self).__init__()
self.chanel_in = in_dim
self.gamma = Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
"""
inputs :
x : input feature maps( B X C X H X W)
returns :
out : attention value + input feature
attention: B X C X C
"""
m_batchsize, C, height, width = x.size()
proj_query = x.view(m_batchsize, C, -1)
proj_key = x.view(m_batchsize, C, -1).permute(0, 2, 1)
energy = torch.bmm(proj_query, proj_key)
energy_new = torch.max(energy, -1, keepdim=True)[0].expand_as(energy) - energy
attention = self.softmax(energy_new)
proj_value = x.view(m_batchsize, C, -1)
out = torch.bmm(attention, proj_value)
out = out.view(m_batchsize, C, height, width)
out = self.gamma * out
return out
# ResNet Block
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
# ResNet BottleNeck
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion *
planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion*planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
# ResNet Backbone As Encoder
class ResNet(nn.Module):
def __init__(self, block, num_blocks, input_channel=32, hidden_dim=128):
super(ResNet, self).__init__()
self.in_planes = 64
self.input_channel = input_channel
self.conv1 = nn.Conv2d(input_channel, 64, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.feat = nn.Sequential(nn.Linear(512*block.expansion, hidden_dim // 2),
nn.BatchNorm1d(hidden_dim // 2, eps=1e-6))
self.sigmoid = nn.Sigmoid()
self.bit_layer = BitLayer(2)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.feat(out)
out = self.sigmoid(out)
out = self.bit_layer(out)
return out
def ResNet18(input_channel=32, hidden_dim=128):
return ResNet(BasicBlock, [2, 2, 2, 2], input_channel, hidden_dim)
def ResNet34(input_channel=32, hidden_dim=128):
return ResNet(BasicBlock, [3, 4, 6, 3], input_channel, hidden_dim)
def ResNet50(input_channel=32, hidden_dim=128):
return ResNet(Bottleneck, [3, 4, 6, 3], input_channel, hidden_dim)
def ResNet101(input_channel=32, hidden_dim=128):
return ResNet(Bottleneck, [3, 4, 23, 3], input_channel, hidden_dim)
def ResNet152(input_channel=32, hidden_dim=128):
return ResNet(Bottleneck, [3, 8, 36, 3], input_channel, hidden_dim)
def convert2bit(input_n, B):
num_ = input_n.long().to(device)
exp_bts = torch.arange(0, B)
exp_bts = exp_bts.repeat(input_n.shape + (1,)).to(device)
bits = torch.div(num_.unsqueeze(-1), 2 ** exp_bts, rounding_mode='trunc')
bits = bits % 2
bits = bits.reshape(bits.shape[0], -1).float().to(device)
return bits
class Bitflow(torch.autograd.Function):
@staticmethod
def forward(ctx, x, b_):
# same with torch.quantize_per_tensor
# toch.quantize_per_tensor can not be converted into ONNX format
ctx.constant = b_
scale = 2 ** b_
out = torch.round(x * scale - 0.5)
out = convert2bit(out, b_)
return out
@staticmethod
def backward(ctx, grad_output):
b, _ = grad_output.shape
grad_num = torch.sum(grad_output.reshape(b, -1, ctx.constant), dim=2) / ctx.constant
return grad_num, None
class BitLayer(nn.Module):
def __init__(self, B):
super(BitLayer, self).__init__()
self.B = B
def forward(self, x):
out = Bitflow.apply(x, self.B)
return out
# Upsampling for VAE3D Decoder
class ConvTransposeNet(nn.Module):
def __init__(self, input_channel, output_channel):
super(ConvTransposeNet, self).__init__()
self.conv = nn.ConvTranspose3d(input_channel, output_channel, kernel_size=3, stride=2, padding=1)
self.bn = nn.BatchNorm3d(output_channel)
self.relu = nn.LeakyReLU(0.1)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
# VAE3D Decoder
class BaseLineDecoder(nn.Module):
def __init__(self, input_dim, hidden_dim):
super(BaseLineDecoder, self).__init__()
linear_block = nn.Sequential(
nn.Linear(hidden_dim, 2048),
nn.BatchNorm1d(2048),
nn.Dropout(0.2),
nn.LeakyReLU(),
)
conv_block = nn.Sequential(
nn.ConvTranspose2d(512, 256, 2, stride=2),
nn.BatchNorm2d(256),
nn.LeakyReLU(),
nn.ConvTranspose2d(256, 128, 2, stride=2),
nn.BatchNorm2d(128),
nn.LeakyReLU(),
nn.ConvTranspose2d(128, 64, 2, stride=2),
nn.BatchNorm2d(64),
nn.LeakyReLU(),
nn.ConvTranspose2d(64, 32, 2, stride=2),
nn.BatchNorm2d(32),
nn.LeakyReLU(),
nn.ConvTranspose2d(32, 16, 2, stride=2),
nn.BatchNorm2d(16),
nn.LeakyReLU(),
)
self.linear_block = linear_block
self.conv_block = conv_block
self.head = nn.Conv2d(16, 8, kernel_size=3, stride=2, padding=1)
self.sigmoid = nn.Sigmoid()
self.pam = PAM_Module()
self.cam = CAM_Module()
self.layer_norm = nn.LayerNorm((8, 32, 32))
def forward(self, input):
output = self.linear_block(input)
output = output.view(-1, 512, 2, 2)
output = self.conv_block(output) # [batch, 16, 64, 64]
output = self.head(output) # [batch, 8, 32, 32]
output = output * self.sigmoid(self.pam(output) + self.cam(output))
output = self.layer_norm(output)
output = self.sigmoid(output) - 0.5
output = output.permute(0, 2, 3, 1).reshape(-1, 4, 2, 32, 32).permute(0, 1, 3, 4, 2)
return output
class ResVAE(nn.Module):
def __init__(self, input_dim=2, latent_dim=48):
super(ResVAE, self).__init__()
self.latent_dim = latent_dim
self.reshape_input = nn.AdaptiveAvgPool2d(32)
self.encoder = ResNet18(32, latent_dim)
self.decoder = BaseLineDecoder(input_dim, latent_dim)
def forward(self, x):
tx = x.permute(0, 1, 4, 2, 3).reshape(-1, 16, 16, 32).permute(0, 3, 1, 2)
tx = self.reshape_input(tx)
feat = self.encoder(tx)
recon = self.decoder(feat)
return recon
def sample(self, size):
noise = torch.randint(2, (size, self.latent_dim)).float().to(device)
recon = self.decoder(noise)
return recon
def loss(self, target, predict):
predict = predict.reshape((-1, 4 * 32 * 32, 2))
predict_complex = torch.complex(predict[..., 0], predict[..., 1])
predict = F.normalize(predict_complex, p=2, dim=1)
target = target.reshape((-1, 4 * 32 * 32, 2))
target_complex = torch.complex(target[..., 0], target[..., 1])
target = F.normalize(target_complex, p=2, dim=1)
recon_loss = F.mse_loss(predict.real, target.real) + F.mse_loss(predict.imag, target.imag)
return recon_loss
if __name__ == '__main__':
model = ResVAE().eval().to(device)
model.load_state_dict(torch.load('saved_models/2/att_sim_0.212_multi_1.918_score_0.774.pth', map_location=device), strict=True)
recon = model.sample(10)
x = torch.randn(10, 128)
print(recon.shape)