-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLAM.py
292 lines (253 loc) · 12.1 KB
/
LAM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# lam.py
import sched
import time
import logging
from datetime import datetime, timedelta
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor, AutoModelForSpeechSeq2Seq, AutoModelForSequenceClassification
import soundfile as sf
import sounddevice as sd
import pyttsx3
import torch
import torch_directml
import numpy as np
from bindsnet.network import Network
from bindsnet.network.nodes import Input
from bindsnet.network.monitors import Monitor
from bindsnet.network.topology import Connection
from phe import paillier
from sklearn.linear_model import LinearRegression
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize DirectML device
dml = torch_directml.device()
# Initialize Text-to-Speech (TTS) engine
tts_engine = pyttsx3.init()
# Load the tokenizer and model for text generation using DirectML
text_tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz")
text_model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz").to(dml)
# Load the processor and model for ASR using DirectML
speech_processor = AutoProcessor.from_pretrained("openai/whisper-large-v3")
speech_model = AutoModelForSpeechSeq2Seq.from_pretrained("openai/whisper-large-v3").to(dml)
# Load the emotion recognition model using DirectML
emotion_tokenizer = AutoTokenizer.from_pretrained("arpanghoshal/EmoRoBERTa")
emotion_model = AutoModelForSequenceClassification.from_pretrained("arpanghoshal/EmoRoBERTa").to(dml)
# Initialize homomorphic encryption
public_key, private_key = paillier.generate_paillier_keypair()
# Machine learning model for predictive analytics
predictive_model = LinearRegression()
class IzhikevichNodes(torch.nn.Module):
def __init__(self, n):
super().__init__()
self.n = n
self.v = -65.0 * torch.ones(n, device=dml)
self.u = self.v * 0.2
self.a = 0.02
self.b = 0.2
self.c = -65.0
self.d = 8.0
def forward(self, x):
v = self.v
u = self.u
a = self.a
b = self.b
c = self.c
d = self.d
fired = v >= 30.0
self.v[fired] = c
self.u[fired] += d
self.v += 0.04 * v**2 + 5 * v + 140 - u + x
self.u += a * (b * v - u)
return fired.float()
class LAM:
def __init__(self, name):
self.name = name
self.tasks = []
self.task_dependencies = {}
self.network = self.create_bindsnet_model()
self.scheduler = sched.scheduler(time.time, time.sleep)
self.context = {"location": None, "time": None, "user_preferences": {}}
def create_bindsnet_model(self):
# Create a BindsNET network
network = Network()
# Define input and Izhikevich neuron layers
input_layer = Input(n=100)
izhikevich_layer = IzhikevichNodes(n=100)
# Connect input to Izhikevich neurons
connection = Connection(source=input_layer, target=izhikevich_layer, w=0.05 * torch.randn(input_layer.n, izhikevich_layer.n, device=dml))
# Add layers and connections to the network
network.add_layer(input_layer, name="Input")
network.add_layer(izhikevich_layer, name="Izhikevich")
network.add_connection(connection, source="Input", target="Izhikevich")
# Add a monitor to record spikes from the Izhikevich layer
monitor = Monitor(obj=izhikevich_layer, state_vars=["s"], time=100)
network.add_monitor(monitor, name="Izhikevich")
return network
def simulate_bindsnet_model(self, input_value):
try:
# Reset the network
self.network.reset_state_variables()
# Create input spikes (binary)
spikes = torch.bernoulli(input_value * torch.ones(100, device=dml)).byte()
# Run the network
self.network.run(inputs={"Input": spikes}, time=100)
# Get spike recordings
izhikevich_spikes = self.network.monitors["Izhikevich"].get("s")
return izhikevich_spikes
except Exception as e:
logger.error(f"Error in simulate_bindsnet_model: {e}")
return None
def add_task(self, task, priority=1, due_time=None, dependencies=[]):
try:
encrypted_task = paillier.EncryptedNumber(public_key, public_key.encrypt(task))
self.tasks.append({"task": encrypted_task, "priority": priority, "due_time": due_time, "dependencies": dependencies})
self.tasks.sort(key=lambda x: (x["priority"], x["due_time"] if x["due_time"] else datetime.max))
for dep in dependencies:
self.task_dependencies[dep] = self.task_dependencies.get(dep, []) + [task]
print(f"Task '{task}' added with priority {priority}.")
if due_time:
delay = (due_time - datetime.now()).total_seconds()
if delay > 0:
self.scheduler.enter(delay, 1, self.notify, argument=(task,))
self.scheduler.run(blocking=False)
except Exception as e:
logger.error(f"Error in add_task: {e}")
def show_tasks(self):
try:
print(f"Tasks for {self.name}:")
for idx, task in enumerate(self.tasks, start=1):
decrypted_task = private_key.decrypt(task["task"])
due_time_str = task["due_time"].strftime('%Y-%m-%d %H:%M:%S') if task["due_time"] else "No due time"
print(f"{idx}. {decrypted_task} (Priority: {task['priority']}, Due: {due_time_str})")
except Exception as e:
logger.error(f"Error in show_tasks: {e}")
def remove_task(self, task_number):
try:
if 0 < task_number <= len(self.tasks):
removed_task = self.tasks.pop(task_number - 1)
decrypted_task = private_key.decrypt(removed_task["task"])
print(f"Task '{decrypted_task}' removed.")
else:
print("Invalid task number.")
except Exception as e:
logger.error(f"Error in remove_task: {e}")
def set_reminder(self, task_number, reminder_time):
try:
if 0 < task_number <= len(self.tasks):
task = self.tasks[task_number - 1]["task"]
decrypted_task = private_key.decrypt(task)
self.tasks[task_number - 1]["due_time"] = reminder_time
delay = (reminder_time - datetime.now()).total_seconds()
if delay > 0:
self.scheduler.enter(delay, 1, self.notify, argument=(decrypted_task,))
self.scheduler.run(blocking=False)
print(f"Reminder set for task '{decrypted_task}' at {reminder_time}.")
else:
print("Invalid task number.")
except Exception as e:
logger.error(f"Error in set_reminder: {e}")
def notify(self, task):
print(f"Reminder: Task '{task}' is due!")
self.speak(f"Reminder: Task '{task}' is due!")
def generate_response(self, prompt):
try:
inputs = text_tokenizer(prompt, return_tensors="pt").to(dml)
outputs = text_model.generate(inputs.input_ids, max_length=50)
response = text_tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
except Exception as e:
logger.error(f"Error in generate_response: {e}")
return "Sorry, I couldn't generate a response at the moment."
def transcribe_audio(self, audio_path):
try:
speech_array, _ = sf.read(audio_path)
inputs = speech_processor(speech_array, sampling_rate=16000, return_tensors="pt").to(dml)
generated_ids = speech_model.generate(inputs.input_ids)
transcription = speech_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return transcription
except Exception as e:
logger.error(f"Error in transcribe_audio: {e}")
return "Sorry, I couldn't transcribe the audio at the moment."
def record_and_transcribe_audio(self, duration=5, fs=16000):
try:
print("Recording...")
audio = sd.rec(int(duration * fs), samplerate=fs, channels=1, dtype='float32')
sd.wait()
print("Recording complete.")
audio_path = "temp_audio.wav"
sf.write(audio_path, audio, fs)
return self.transcribe_audio(audio_path)
except Exception as e:
logger.error(f"Error in record_and_transcribe_audio: {e}")
return "Sorry, I couldn't transcribe the audio at the moment."
def recognize_emotion(self, text):
try:
inputs = emotion_tokenizer(text, return_tensors="pt").to(dml)
outputs = emotion_model(**inputs)
scores = outputs.logits[0].detach().cpu().numpy()
emotions = ['anger', 'disgust', 'fear', 'joy', 'neutral', 'sadness', 'surprise']
emotion = emotions[np.argmax(scores)]
return emotion
except Exception as e:
logger.error(f"Error in recognize_emotion: {e}")
return "Emotion recognition failed."
def process_task_with_bindsnet(self, task):
try:
input_value = torch.tensor([len(task)]).float().to(dml) / 10 # Normalize input
spikes = self.simulate_bindsnet_model(input_value)
if spikes is not None:
spike_count = spikes.sum().item()
return spike_count
else:
return 0
except Exception as e:
logger.error(f"Error in process_task_with_bindsnet: {e}")
return 0
def record_process_emotion_and_respond(self, duration=5, fs=16000):
try:
transcription = self.record_and_transcribe_audio(duration, fs)
print(f"Transcribed text: {transcription}")
emotion = self.recognize_emotion(transcription)
print(f"Recognized emotion: {emotion}")
response = self.generate_response(f"The detected emotion is {emotion}. How can I help you with that?")
self.speak(response)
except Exception as e:
logger.error(f"Error in record_process_emotion_and_respond: {e}")
self.speak("Sorry, I couldn't process the emotion at the moment.")
def analyze_task_priority_and_urgency(self):
try:
for task in self.tasks:
decrypted_task = private_key.decrypt(task["task"])
priority = task["priority"]
due_time = task["due_time"]
urgency = (due_time - datetime.now()).total_seconds() if due_time else float('inf')
# Example logic for priority and urgency analysis
if urgency < 3600: # Task due within an hour
task["priority"] = max(priority, 1) # Increase priority if urgent
elif urgency < 86400: # Task due within a day
task["priority"] = max(priority, 2)
else:
task["priority"] = max(priority, 3)
self.tasks.sort(key=lambda x: (x["priority"], x["due_time"] if x["due_time"] else datetime.max))
except Exception as e:
logger.error(f"Error in analyze_task_priority_and_urgency: {e}")
def predictive_analytics(self, historical_data):
try:
# Example historical data: list of (task_length, time_taken)
X = np.array([data[0] for data in historical_data]).reshape(-1, 1)
y = np.array([data[1] for data in historical_data])
predictive_model.fit(X, y)
predicted_time = predictive_model.predict(np.array([[len(self.tasks[-1]["task"])]])).item()
print(f"Predicted time for the new task: {predicted_time} seconds")
except Exception as e:
logger.error(f"Error in predictive_analytics: {e}")
def update_context(self, location=None, time=None, user_preferences=None):
if location:
self.context["location"] = location
if time:
self.context["time"] = time
if user_preferences:
self.context["user_preferences"] = user_preferences
def speak(self, text):
tts_engine.say(text)
tts_engine.runAndWait()