-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathshooting.py
257 lines (228 loc) · 7.76 KB
/
shooting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
'''
Boundary value problem with shooting method
'''
import numpy as np
import matplotlib.pyplot as plt
#============================================================================
# Itegration: Adams-Bashforth-Moulton predictor and corretor of order 4
#============================================================================
def AMB4(num_steps, t0, tf, f, init, args=()):
"""
Integrator with Adams-Bashforth-Moulton
predictor and corretor of order 4
Parameters
----------
num_steps : int
number of point of solution
t0 : float
lower bound of integration
tf : float
upper bound of integration
f : callable
function to integrate, must accept vectorial input
init : 1darray
array of initial condition
args : tuple, optional
extra arguments to pass to f
Return
------
X : array, shape (num_steps + 1, len(init))
solution of equation
t : 1darray
time
"""
#time steps
dt = tf/num_steps
X = np.zeros((num_steps + 1, len(init))) #matrice delle soluzioni
t = np.zeros(num_steps + 1) #array dei tempi
X[0, :] = init #condizioni iniziali
t[0] = t0
#primi passi con runge kutta
for i in range(3):
xk1 = f(t[i], X[i, :], *args)
xk2 = f(t[i] + dt/2, X[i, :] + xk1*dt/2, *args)
xk3 = f(t[i] + dt/2, X[i, :] + xk2*dt/2, *args)
xk4 = f(t[i] + dt, X[i, :] + xk3*dt, *args)
X[i + 1, :] = X[i, :] + (dt/6)*(xk1 + 2*xk2 + 2*xk3 + xk4)
t[i + 1] = t[i] + dt
# Adams-Bashforth-Moulton
i = 3
AB0 = f(t[i ], X[i, :], *args)
AB1 = f(t[i-1], X[i-1, :], *args)
AB2 = f(t[i-2], X[i-2, :], *args)
AB3 = f(t[i-3], X[i-3, :], *args)
for i in range(3,num_steps):
#predico
X[i + 1, :] = X[i, :] + dt/24*(55*AB0 - 59*AB1 + 37*AB2 - 9*AB3)
t[i + 1] = t[i] + dt
#correggo
AB3 = AB2
AB2 = AB1
AB1 = AB0
AB0 = f(t[i+1], X[i + 1, :], *args)
X[i + 1, :] = X[i, :] + dt/24*(9*AB0 + 19*AB1 - 5*AB2 + AB3)
return X, t
#============================================================================
# To visualize the function to find the zeros
#============================================================================
def F(N, x0, start, xi, xf, step, x1, n, f, args=()):
'''
Compute the function to find the zeros to have only an idea of where to look
Parameters
----------
N : Integer
number of integration steps.
x0 : float
initial condition on position.
start : float
initial condition on speed.
xi : float
initial time of integration.
xf : float
final time of integration.
step : float
start increment
x1 : float
boundary condition of solution
n : int
number of function values to calculate
f : callable
function to integrate, must accept vectorial input
args : tuple, optional
extra arguments to pass to f
Returns
-------
xs : one dimensional array
solution of the equation
'''
P = np.zeros(n)
S = np.linspace(start, start+n*step, n)
for j, s in enumerate(S):
P[j] = AMB4(N, xi, xf, f, init=(x0, s), args=args)[0][-1, 0]
return S, P - x1
#============================================================================
# Binary research to find the right solution with shooting method
#============================================================================
def SH(N, x0, start, xi, xf, step, x1, tau, f, args=()):
'''
Function that calculates zeros with the bisection method
Parameters
----------
N : Integer
number of integration steps.
x0 : float
initial condition on position.
start : float
initial condition on speed.
xi : float
initial time of integration.
xf : float
final time of integration.
step : float
start increment
x1 : float
boundary condition of solution
tau : float
tollerance on find value
f : callable
function to integrate, must accept vectorial input
args : tuple, optional
extra arguments to pass to f
Returns
-------
m : float
ideal intial condition for speed
sol : one dimensional array
solution of the equation
'''
a = start
sol = AMB4(N, xi, xf, f, init=(x0, a), args=args)
k = sol[0][-1, 0] - x1
while True:
b = a + step
sol = AMB4(N, xi, xf, f, init=(x0, b), args=args)
D = sol[0][-1, 0] - x1
if (k*D)<0.0:
break
k = D
a = b
while abs(a - b)>tau:
m = (a + b)/2.0
sol = AMB4(N, xi, xf, f, init=(x0, m), args=args)
M = sol[0][-1, 0] - x1
if (M*k)>0 :
k = M
a = m
else :
D = M
b = m
return m, sol
#============================================================================
# Main code
#============================================================================
def f(t, Y, g, o02):
x, v = Y
x_dot = v
v_dot = -g*v - o02*x
return np.array([x_dot, v_dot])
g = 0.3 # damping factor
o02 = 1 # proper frequency squared
o2 = o02 - (g/2)**2 # frequency squared
k = 2 # parameter for time
xi = 0 # left end of the interval
xf = k*np.pi/np.sqrt(o2) # right end of the range
N = 1000 # number of points
x0 = 1 # initial value at the left end
x1 = 0.38548 # value we want assume the solution in the right extreme
tau = 1e-10 # tollerance
'''
Evry solution of this differential equation for severalò initial condition
non velocity assume the same value at each xf for all k
'''
#============================================================================
# Expositive plot, more than one solution can be good
#============================================================================
n = 50 # number of curves
start = -2
step = 0.05
v_i = np.linspace(start, start+n*step, n)
colors = plt.cm.jet(np.linspace(0, 1, n))
plt.figure(0)
for i in range(n):
sol, t = AMB4(N, xi, xf, f, init=(x0, v_i[i]), args=(g, o02))
y, vy = sol.T
plt.plot(t, y, c=colors[i])
plt.title(f'Several solutions with k={k}', fontsize=15)
plt.ylabel('y(t)', fontsize=15)
plt.xlabel('t', fontsize=15)
#plt.show();exit()
#============================================================================
# function to find the zeros
#============================================================================
# reset limit value to ave only one solution
xf = 5
x1 = 0.1862
t, y = F(N, x0, start, xi, xf, step, x1, n, f, args=(g, o02))
# to visualize the zeros
plt.figure(1)
plt.title('Function to find the zeros of', fontsize=20)
plt.ylabel('y(1;s)-y(1)', fontsize=15)
plt.xlabel('s', fontsize=15)
plt.grid()
plt.plot(t, 0*t, color='red', linestyle='--')
plt.plot(t, y, 'b')
#plt.show();exit()
#============================================================================
# final solution
#============================================================================
v0, sol1 = SH(N, x0, -2, xi, xf, 0.1, x1, tau, f, args=(g, o02))
sol, t1 = sol1
y1 , _ = sol.T
plt.figure(2)
plt.title(f'Solution', fontsize=15)
plt.ylabel('y(t)', fontsize=15)
plt.xlabel('t', fontsize=15)
plt.grid()
plt.plot(t1, y1, 'b', label='$y_1(t)$, $\dot{y}(t=0)$'+f'={v0:.3f}')
plt.legend(loc='best')
plt.show()