forked from lippman1125/S3FD.PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_s3fd_mv2_file.py
234 lines (202 loc) · 8.39 KB
/
test_s3fd_mv2_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from __future__ import print_function
import os
import argparse
import torch
import torch.backends.cudnn as cudnn
import numpy as np
from data.config_s3fd_mv2 import cfg
from layers.functions.prior_box_s3fd import PriorBox
from utils.nms_wrapper import nms
import cv2
from models.s3fd import S3FD_MV2
from utils.box_utils import decode
from utils.timer import Timer
import scipy.io as sio
parser = argparse.ArgumentParser(description='S3FD')
parser.add_argument('-m', '--trained_model', default='weights/FaceBoxes.pth',
type=str, help='Trained state_dict file path to open')
parser.add_argument('--save_folder', default='eval/WIDER_FACE/', type=str, help='Dir to save results')
parser.add_argument('--cuda', default=False, type=bool, help='Use cuda to train model')
parser.add_argument('--cpu', default=False, type=bool, help='Use cpu nms')
parser.add_argument('--dataset', default='FDDB', type=str, choices=['WIDER'], help='dataset')
parser.add_argument('--confidence_threshold', default=0.05, type=float, help='confidence_threshold')
parser.add_argument('--top_k', default=5000, type=int, help='top_k')
parser.add_argument('--nms_threshold', default=0.3, type=float, help='nms_threshold')
parser.add_argument('--keep_top_k', default=750, type=int, help='keep_top_k')
args = parser.parse_args()
def check_keys(model, pretrained_state_dict):
ckpt_keys = set(pretrained_state_dict.keys())
model_keys = set(model.state_dict().keys())
used_pretrained_keys = model_keys & ckpt_keys
unused_pretrained_keys = ckpt_keys - model_keys
missing_keys = model_keys - ckpt_keys
print('Missing keys:{}'.format(len(missing_keys)))
print('Unused checkpoint keys:{}'.format(len(unused_pretrained_keys)))
print('Used keys:{}'.format(len(used_pretrained_keys)))
assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint'
return True
def remove_prefix(state_dict, prefix):
''' Old style model is stored with all names of parameters sharing common prefix 'module.' '''
print('remove prefix \'{}\''.format(prefix))
f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x
return {f(key): value for key, value in state_dict.items()}
def load_model(model, pretrained_path):
print('Loading pretrained model from {}'.format(pretrained_path))
device = torch.cuda.current_device()
pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage.cuda(device))
if "state_dict" in pretrained_dict.keys():
pretrained_dict = remove_prefix(pretrained_dict['state_dict'], 'module.')
else:
pretrained_dict = remove_prefix(pretrained_dict, 'module.')
check_keys(model, pretrained_dict)
model.load_state_dict(pretrained_dict, strict=False)
return model
def detect_face(net, img, resize):
if resize != 1:
img = cv2.resize(img, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
im_height, im_width, _ = img.shape
scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
img -= (104, 117, 123)
img = img.transpose(2, 0, 1)
img = torch.from_numpy(img).unsqueeze(0)
if args.cuda:
img = img.cuda()
scale = scale.cuda()
out = net(img) # forward pass
priorbox = PriorBox(cfg, out[2], (im_height, im_width), phase='test')
priors = priorbox.forward()
if args.cuda:
priors = priors.cuda()
loc, conf, _ = out
prior_data = priors.data
boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
boxes = boxes * scale / resize
boxes = boxes.cpu().numpy()
scores = conf.data.squeeze(0).cpu().numpy()[:, 1]
# ignore low scores
inds = np.where(scores > args.confidence_threshold)[0]
boxes = boxes[inds]
scores = scores[inds]
# keep top-K before NMS
order = scores.argsort()[::-1][:args.top_k]
boxes = boxes[order]
scores = scores[order]
#print(boxes)
# do NMS
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
keep = nms(dets, args.nms_threshold)
dets = dets[keep, :]
#print(dets)
# keep top-K faster NMS
dets = dets[:args.keep_top_k, :]
return dets
def flip_test(net, image, shrink):
image_f = cv2.flip(image, 1)
det_f = detect_face(net, image_f, shrink)
det_t = np.zeros(det_f.shape)
det_t[:, 0] = image.shape[1] - det_f[:, 2]
det_t[:, 1] = det_f[:, 1]
det_t[:, 2] = image.shape[1] - det_f[:, 0]
det_t[:, 3] = det_f[:, 3]
det_t[:, 4] = det_f[:, 4]
return det_t
def multi_scale_test(net, image, max_im_shrink):
# shrink detecting and shrink only detect big face
st = 0.5 if max_im_shrink >= 0.75 else 0.5 * max_im_shrink
det_s = detect_face(net, image, st)
index = np.where(np.maximum(det_s[:, 2] - det_s[:, 0] + 1, det_s[:, 3] - det_s[:, 1] + 1) > 30)[0]
det_s = det_s[index, :]
# enlarge one times
bt = min(2, max_im_shrink) if max_im_shrink > 1 else (st + max_im_shrink) / 2
det_b = detect_face(net, image, bt)
# enlarge small iamge x times for small face
if max_im_shrink > 2:
bt *= 2
while bt < max_im_shrink:
det_b = np.row_stack((det_b, detect_face(net, image, bt)))
bt *= 2
det_b = np.row_stack((det_b, detect_face(net, image, max_im_shrink)))
# enlarge only detect small face
if bt > 1:
index = np.where(np.minimum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1) < 100)[0]
det_b = det_b[index, :]
else:
index = np.where(np.maximum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1) > 30)[0]
det_b = det_b[index, :]
return det_s, det_b
def bbox_vote(det):
order = det[:, 4].ravel().argsort()[::-1]
det = det[order, :]
while det.shape[0] > 0:
# IOU
area = (det[:, 2] - det[:, 0] + 1) * (det[:, 3] - det[:, 1] + 1)
xx1 = np.maximum(det[0, 0], det[:, 0])
yy1 = np.maximum(det[0, 1], det[:, 1])
xx2 = np.minimum(det[0, 2], det[:, 2])
yy2 = np.minimum(det[0, 3], det[:, 3])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
o = inter / (area[0] + area[:] - inter)
# get needed merge det and delete these det
merge_index = np.where(o >= 0.3)[0]
det_accu = det[merge_index, :]
det = np.delete(det, merge_index, 0)
if merge_index.shape[0] <= 1:
continue
det_accu[:, 0:4] = det_accu[:, 0:4] * np.tile(det_accu[:, -1:], (1, 4))
max_score = np.max(det_accu[:, 4])
det_accu_sum = np.zeros((1, 5))
det_accu_sum[:, 0:4] = np.sum(det_accu[:, 0:4], axis=0) / np.sum(det_accu[:, -1:])
det_accu_sum[:, 4] = max_score
try:
dets = np.row_stack((dets, det_accu_sum))
except:
dets = det_accu_sum
dets = dets[0:750, :]
return dets
def write_to_txt(f, det):
f.write('{:s}\n'.format(event[0][0] + '/' + im_name + '.jpg'))
f.write('{:d}\n'.format(det.shape[0]))
for i in range(det.shape[0]):
xmin = det[i][0]
ymin = det[i][1]
xmax = det[i][2]
ymax = det[i][3]
score = det[i][4]
f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'.
format(xmin, ymin, (xmax - xmin + 1), (ymax - ymin + 1), score))
if __name__ == '__main__':
# net and model
net = S3FD_MV2(phase='test', size=None, num_classes=2) # initialize detector
net = load_model(net, args.trained_model)
net.eval()
print('Finished loading model!')
print(net)
print(args.cuda)
if args.cuda:
net = net.cuda()
cudnn.benchmark = True
else:
net = net.cpu()
Path = './demo'
filelist = ['office', 'festival', 'oscar']
for num, file in enumerate(filelist):
im_name = file
Image_Path = Path + '/' + im_name[:] + '.jpg'
print(Image_Path)
image = cv2.imread(Image_Path, cv2.IMREAD_COLOR)
h,w,c = np.shape(image)
#print(resize)
minside = h if h < w else w
resize = 1080.0 / minside
print(resize)
dets = detect_face(net, np.float32(image), resize) # origin test
print(dets)
for i in range(len(dets)):
x1, y1, x2, y2, s = dets[i]
if s >= 0.9:
cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
cv2.imshow("disp", image)
cv2.waitKey(0)
# cv2.imwrite(im_name + "_out.jpg", image)