-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
executable file
·248 lines (196 loc) · 7.74 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import shutil
import time
import pprint
import torch, glob
import numpy as np
import argparse
from enum import Enum
from tensorboardX import SummaryWriter
import os.path as osp
class Model_type(Enum):
ConvNet = 'ConvNet'
ResNet12 = 'ResNet12'
WideResNet = 'WideResNet'
def __str__(self):
return self.value
class Method_type(Enum):
protonet = 'protonet'
baseline = 'baseline'
def __str__(self):
return self.value
def read_many_hdf5(h5file):
""" Reads image from HDF5.
Parameters:
---------------
num_images number of images to read
Returns:
----------
images images array, (N, 32, 32, 3) to be stored
labels associated meta data, int label (N, 1)
"""
images = np.array(h5file["images"]).astype("uint8")
labels = np.array(h5file["labels"]).astype("uint8")
return images, labels
def parse_args(script='train'):
parser = argparse.ArgumentParser()
parser.add_argument('--max_epoch', type=int, default=200)
parser.add_argument('--n_way', type=int, default=5)
parser.add_argument('--n_shot', type=int, default=5)
parser.add_argument('--n_query', type=int, default=15)
if script == 'train':
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--lr_mul', type=float,
default=10) # lr is the basic learning rate, while lr * lr_mul is the lr for other parts
parser.add_argument('--weight_decay', type=float, default=0.0005)
parser.add_argument('--temperature', type=float, default=16)
parser.add_argument('--balance', type=float, default=10)
parser.add_argument('--step_size', type=int, default=10)
parser.add_argument('--n_train_classes', type=int, default=64)
parser.add_argument('--gamma', type=float, default=0.5)
parser.add_argument('--method_type', type=Method_type, default=Method_type.baseline, choices=list(Method_type))
parser.add_argument('--model_type', type=Model_type, default=Model_type.ResNet12, choices=list(Model_type))
parser.add_argument('--dataset', type=str, default='MiniImageNet',
choices=['MiniImageNet', 'CUB', 'TieredImageNet', 'DomainNet'])
parser.add_argument('--head', type=int, default=1)
parser.add_argument('--name', default='', help='unique str for saving dir')
parser.add_argument('--warmup', default=None, help='dir of pretrained weights')
parser.add_argument('--exp_tag', default='_', choices=['_'],
help='different seetings of experiments')
parser.add_argument('--tsboard', action='store_true')
parser.add_argument('--train_enc', action='store_true', help='whether to train the encoder')
parser.add_argument('--resume', action='store_true', help='resume from the last epoch if specified')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--test', action='store_true')
args = parser.parse_args()
args.start_epoch = 0
args.lr = 0.01 if args.method_type is Method_type.baseline else 0.0001
args.dataset_dir = '/media/frankllin/Data/dataset/crossDomainDatasets/miniImagenet/'
args.save_dir = 'output'
args.tf_dir = '%s/log/%s' % (args.save_dir, args.name)
args.checkpoint_dir = '%s/checkpoints/%s' % (args.save_dir, args.name + '_' + str(args.method_type) + '_' +
str(args.model_type) + '_' + str(args.n_shot) + 'shot')
if not os.path.exists(args.checkpoint_dir):
os.makedirs(args.checkpoint_dir)
if args.model_type is Model_type.ResNet12:
# args.image_size = 80
args.image_size = 84
else:
args.image_size = 84
args.max_acc = 0.0
return args
import pickle
def save_pickle(file, data):
with open(file, 'wb') as f:
pickle.dump(data, f)
def load_pickle(file):
with open(file, 'rb') as f:
return pickle.load(f)
def set_gpu(x):
os.environ['CUDA_VISIBLE_DEVICES'] = x
print('using gpu:', x)
def init():
args = parse_args(script= 'train')
print('-----------------------------------------------------------------')
pretty_print(vars(args))
print('-----------------------------------------------------------------')
import multiprocessing
args.num_workers = multiprocessing.cpu_count()
if args.tsboard:
tsboard_dir = osp.join(args.project_dir, 'saves/tsboard/' + args.save_tag)
ensure_path(tsboard_dir, remove=True)
writer = SummaryWriter(tsboard_dir)
else:
writer = None
return args, writer
def resume_model(model, optimizer, args, scheduler=None):
resume_file = os.path.join(args.checkpoint_dir, 'epoch-last.pth')
if os.path.isfile(resume_file):
tmp = torch.load(resume_file)
args.start_epoch = tmp['epoch'] + 1
args.max_acc = tmp['max_acc']
model.load_state_dict(tmp['params'])
optimizer.load_state_dict(tmp['opt_state'])
if scheduler is not None:
scheduler.load_state_dict(tmp['scheduler_state'])
print('Resuming from epoch %d' % (args.start_epoch))
return True
else:
return False
def load_pretrained_weights(model, args):
print('warmup using %s'%(args.warmup))
pretrained_dict = torch.load(args.warmup)['params']
model.load_state_dict(pretrained_dict, strict=False)
def save_model(model, optimizer, args, epoch, max_acc, name, scheduler=None):
data = {'epoch': epoch,
'max_acc': max_acc,
'params': model.state_dict(),
'opt_state': optimizer.state_dict()}
if scheduler is not None:
data['scheduler_state'] = scheduler.state_dict()
torch.save(data, os.path.join(args.checkpoint_dir, name + '.pth'))
def get_resume_file(checkpoint_dir):
filelist = glob.glob(os.path.join(checkpoint_dir, '[0-9]*.tar'))
if len(filelist) == 0:
return None
def ensure_path(path, remove=True):
if os.path.exists(path):
if remove:
# if input('{} exists, remove? ([y]/n)'.format(path)) != 'n':
shutil.rmtree(path)
os.mkdir(path)
else:
os.mkdir(path)
class Averager():
def __init__(self):
self.n = 0
self.v = 0
def add(self, x):
self.v = (self.v * self.n + x) / (self.n + 1)
self.n += 1
def item(self):
return self.v
def count_acc(logits, label):
pred = torch.argmax(logits, dim=1)
if torch.cuda.is_available():
return (pred == label).type(torch.cuda.FloatTensor).mean().item()
else:
return (pred == label).type(torch.FloatTensor).mean().item()
def euclidean_dist(x, y):
# x: N x D
# y: M x D
n = x.size(0)
m = y.size(0)
d = x.size(1)
assert d == y.size(1)
x = x.unsqueeze(1).expand(n, m, d)
y = y.unsqueeze(0).expand(n, m, d)
return torch.pow(x - y, 2).sum(2)
class Timer():
def __init__(self):
self.o = time.time()
def measure(self, p=1):
x = (time.time() - self.o) / p
x = int(x)
if x >= 3600:
return '{:.1f}h'.format(x / 3600)
if x >= 60:
return '{}m'.format(round(x / 60))
return '{}s'.format(x)
_utils_pp = pprint.PrettyPrinter()
def pretty_print(x, filename=None):
_utils_pp.pprint(x)
if filename is not None:
with open(filename, "w") as fout:
pprint.pprint(x, fout)
def compute_confidence_interval(data):
"""
Compute 95% confidence interval
:param data: An array of mean accuracy (or mAP) across a number of sampled episodes.
:return: the 95% confidence interval for this data.
"""
a = 1.0 * np.array(data)
m = np.mean(a)
std = np.std(a)
pm = 1.96 * (std / np.sqrt(len(a)))
return m, pm