forked from nv-tlabs/GET3D
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_3d.py
341 lines (307 loc) · 19.2 KB
/
train_3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
import os
import click
import re
import json
import tempfile
import torch
import dnnlib
from training import training_loop_3d
from metrics import metric_main
from torch_utils import training_stats
from torch_utils import custom_ops
from training import inference_3d
# ----------------------------------------------------------------------------
def subprocess_fn(local_rank, c, temp_dir):
dnnlib.util.Logger(file_name=os.path.join(c.run_dir, 'log.txt'), file_mode='a', should_flush=True)
rank = 0
# Init torch.distributed.
if c.num_gpus > 1:
rank = int(os.environ['RANK']) # 当前机器编号
gpus = torch.cuda.device_count() # 每台机器的GPU个数
rank = rank * gpus + local_rank
hosts = int(os.environ['WORLD_SIZE']) # 机器个数
c.num_gpus = hosts * gpus
init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init'))
if os.name == 'nt':
init_method = 'file:///' + init_file.replace('\\', '/')
torch.distributed.init_process_group(
backend='gloo', icfgnit_method=init_method, rank=rank, world_size=c.num_gpus)
else:
ip = os.environ.get('MASTER_ADDR', 'localhost')
port = os.environ['MASTER_PORT']
init_method = f'tcp://{ip}:{port}'
torch.distributed.init_process_group(
backend='nccl', init_method=init_method, rank=rank, world_size=c.num_gpus)
torch.cuda.set_device(local_rank)
# Init torch_utils.
sync_device = torch.device('cuda') if c.num_gpus > 1 else None
training_stats.init_multiprocessing(rank=rank, sync_device=sync_device)
if rank != 0:
custom_ops.verbosity = 'none'
if c.inference_vis:
inference_3d.inference(rank=rank, **c)
# Execute training loop.
else:
training_loop_3d.training_loop(rank=rank, **c)
# ----------------------------------------------------------------------------
def launch_training(c, desc, outdir, dry_run):
dnnlib.util.Logger(should_flush=True)
# Pick output directory.
prev_run_dirs = []
if os.path.isdir(outdir):
prev_run_dirs = [x for x in os.listdir(outdir) if os.path.isdir(os.path.join(outdir, x))]
prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs]
prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None]
cur_run_id = max(prev_run_ids, default=-1) + 1
if c.inference_vis:
c.run_dir = os.path.join(outdir, 'inference')
else:
c.run_dir = os.path.join(outdir, f'{cur_run_id:05d}-{desc}')
assert not os.path.exists(c.run_dir)
# Print options.
print()
print('Training options:')
print(json.dumps(c, indent=2))
print()
print(f'Output directory: {c.run_dir}')
print(f'Number of GPUs: {c.num_gpus}')
print(f'Batch size: {c.batch_size} images')
print(f'Training duration: {c.total_kimg} kimg')
print(f'Dataset path: {c.training_set_kwargs.path}')
print(f'Dataset size: {c.training_set_kwargs.max_size} images')
print(f'Dataset resolution: {c.training_set_kwargs.resolution}')
print(f'Dataset labels: {c.training_set_kwargs.use_labels}')
print(f'Dataset x-flips: {c.training_set_kwargs.xflip}')
print()
# Dry run?
if dry_run:
print('Dry run; exiting.')
return
# Create output directory.
print('Creating output directory...')
if not os.path.exists(c.run_dir):
os.makedirs(c.run_dir)
with open(os.path.join(c.run_dir, 'training_options.json'), 'wt') as f:
json.dump(c, f, indent=2)
# Launch processes.
print('Launching processes...')
torch.multiprocessing.set_start_method('spawn', force=True)
with tempfile.TemporaryDirectory() as temp_dir:
if c.num_gpus == 1:
subprocess_fn(local_rank=0, c=c, temp_dir=temp_dir)
else:
ngpus = torch.cuda.device_count()
torch.multiprocessing.spawn(fn=subprocess_fn, args=(c, temp_dir), nprocs=ngpus)
# ----------------------------------------------------------------------------
def init_dataset_kwargs(data, opt=None):
try:
if opt.use_shapenet_split:
dataset_kwargs = dnnlib.EasyDict(
class_name='training.dataset.ImageFolderDataset',
path=data, use_labels=True, max_size=None, xflip=False,
resolution=opt.img_res,
data_camera_mode=opt.data_camera_mode,
add_camera_cond=opt.add_camera_cond,
camera_path=opt.camera_path,
split='test' if opt.inference_vis else 'train',
)
else:
dataset_kwargs = dnnlib.EasyDict(
class_name='training.dataset.ImageFolderDataset',
path=data, use_labels=True, max_size=None, xflip=False, resolution=opt.img_res,
data_camera_mode=opt.data_camera_mode,
add_camera_cond=opt.add_camera_cond,
camera_path=opt.camera_path,
)
dataset_obj = dnnlib.util.construct_class_by_name(**dataset_kwargs) # Subclass of training.dataset.Dataset.
dataset_kwargs.camera_path = opt.camera_path
dataset_kwargs.resolution = dataset_obj.resolution # Be explicit about resolution.
dataset_kwargs.use_labels = dataset_obj.has_labels # Be explicit about labels.
dataset_kwargs.max_size = len(dataset_obj) # Be explicit about dataset size.
return dataset_kwargs, dataset_obj.name
except IOError as err:
raise click.ClickException(f'--data: {err}')
# ----------------------------------------------------------------------------
def parse_comma_separated_list(s):
if isinstance(s, list):
return s
if s is None or s.lower() == 'none' or s == '':
return []
return s.split(',')
# ----------------------------------------------------------------------------
@click.command()
# Required from StyleGAN2.
@click.option('--outdir', help='Where to save the results', metavar='DIR', required=True)
@click.option('--cfg', help='Base configuration', type=click.Choice(['stylegan3-t', 'stylegan3-r', 'stylegan2']), default='stylegan2')
@click.option('--gpus', help='Number of GPUs to use', metavar='INT', type=click.IntRange(min=1), required=True)
@click.option('--batch', help='Total batch size', metavar='INT', type=click.IntRange(min=1), required=True)
@click.option('--gamma', help='R1 regularization weight', metavar='FLOAT', type=click.FloatRange(min=0), required=True)
# My custom configs
### Configs for inference
@click.option('--resume_pretrain', help='Resume from given network pickle', metavar='[PATH|URL]', type=str)
@click.option('--inference_vis', help='whther we run infernce', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--inference_to_generate_textured_mesh', help='inference to generate textured meshes', metavar='BOOL', type=bool, default=False, show_default=False)
@click.option('--inference_save_interpolation', help='inference to generate interpolation results', metavar='BOOL', type=bool, default=False, show_default=False)
@click.option('--inference_compute_fid', help='inference to generate interpolation results', metavar='BOOL', type=bool, default=False, show_default=False)
@click.option('--inference_generate_geo', help='inference to generate geometry points', metavar='BOOL', type=bool, default=False, show_default=False)
### Configs for dataset
@click.option('--data', help='Path to the Training data Images', metavar='[DIR]', type=str, default='./tmp')
@click.option('--camera_path', help='Path to the camera root', metavar='[DIR]', type=str, default='./tmp')
@click.option('--img_res', help='The resolution of image', metavar='INT', type=click.IntRange(min=1), default=1024)
@click.option('--data_camera_mode', help='The type of dataset we are using', type=str, default='shapenet_car', show_default=True)
@click.option('--use_shapenet_split', help='whether use the training split or all the data for training', metavar='BOOL', type=bool, default=False, show_default=False)
### Configs for 3D generator##########
@click.option('--use_style_mixing', help='whether use style mixing for generation during inference', metavar='BOOL', type=bool, default=True, show_default=False)
@click.option('--one_3d_generator', help='whether we detach the gradient for empty object', metavar='BOOL', type=bool, default=True, show_default=True)
@click.option('--dmtet_scale', help='Scale for the dimention of dmtet', metavar='FLOAT', type=click.FloatRange(min=0, max=10.0), default=1.0, show_default=True)
@click.option('--n_implicit_layer', help='Number of Implicit FC layer for XYZPlaneTex model', metavar='INT', type=click.IntRange(min=1), default=1)
@click.option('--feat_channel', help='Feature channel for TORGB layer', metavar='INT', type=click.IntRange(min=0), default=16)
@click.option('--mlp_latent_channel', help='mlp_latent_channel for XYZPlaneTex network', metavar='INT', type=click.IntRange(min=8), default=32)
@click.option('--deformation_multiplier', help='Multiplier for the predicted deformation', metavar='FLOAT', type=click.FloatRange(min=1.0), default=1.0, required=False)
@click.option('--tri_plane_resolution', help='The resolution for tri plane', metavar='INT', type=click.IntRange(min=1), default=256)
@click.option('--n_views', help='number of views when training generator', metavar='INT', type=click.IntRange(min=1), default=1)
@click.option('--use_tri_plane', help='Whether use tri plane representation', metavar='BOOL', type=bool, default=True, show_default=True)
@click.option('--tet_res', help='Resolution for teteahedron', metavar='INT', type=click.IntRange(min=1), default=90)
@click.option('--latent_dim', help='Dimention for latent code', metavar='INT', type=click.IntRange(min=1), default=512)
@click.option('--geometry_type', help='The type of geometry generator', type=str, default='conv3d', show_default=True)
@click.option('--render_type', help='Type of renderer we used', metavar='STR', type=click.Choice(['neural_render', 'spherical_gaussian']), default='neural_render', show_default=True)
### Configs for training loss and discriminator#
@click.option('--d_architecture', help='The architecture for discriminator', metavar='STR', type=str, default='skip', show_default=True)
@click.option('--use_pl_length', help='whether we apply path length regularization', metavar='BOOL', type=bool, default=False, show_default=False) # We didn't use path lenth regularzation to avoid nan error
@click.option('--gamma_mask', help='R1 regularization weight for mask', metavar='FLOAT', type=click.FloatRange(min=0), default=0.0, required=False)
@click.option('--d_reg_interval', help='The internal for R1 regularization', metavar='INT', type=click.IntRange(min=1), default=16)
@click.option('--add_camera_cond', help='Whether we add camera as condition for discriminator', metavar='BOOL', type=bool, default=True, show_default=True)
## Miscs
# Optional features.
@click.option('--cond', help='Train conditional model', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--freezed', help='Freeze first layers of D', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True)
# Misc hyperparameters.
@click.option('--batch-gpu', help='Limit batch size per GPU', metavar='INT', type=click.IntRange(min=1), default=4)
@click.option('--cbase', help='Capacity multiplier', metavar='INT', type=click.IntRange(min=1), default=32768, show_default=True)
@click.option('--cmax', help='Max. feature maps', metavar='INT', type=click.IntRange(min=1), default=512, show_default=True)
@click.option('--glr', help='G learning rate [default: varies]', metavar='FLOAT', type=click.FloatRange(min=0))
@click.option('--dlr', help='D learning rate', metavar='FLOAT', type=click.FloatRange(min=0), default=0.002, show_default=True)
@click.option('--map-depth', help='Mapping network depth [default: varies]', metavar='INT', type=click.IntRange(min=1))
@click.option('--mbstd-group', help='Minibatch std group size', metavar='INT', type=click.IntRange(min=1), default=4, show_default=True)
# Misc settings.
@click.option('--desc', help='String to include in result dir name', metavar='STR', type=str)
@click.option('--metrics', help='Quality metrics', metavar='[NAME|A,B,C|none]', type=parse_comma_separated_list, default='fid50k', show_default=True)
@click.option('--kimg', help='Total training duration', metavar='KIMG', type=click.IntRange(min=1), default=20000, show_default=True)
@click.option('--tick', help='How often to print progress', metavar='KIMG', type=click.IntRange(min=1), default=1, show_default=True) ##
@click.option('--snap', help='How often to save snapshots', metavar='TICKS', type=click.IntRange(min=1), default=50, show_default=True) ###
@click.option('--seed', help='Random seed', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True)
@click.option('--fp32', help='Disable mixed-precision', metavar='BOOL', type=bool, default=True, show_default=True) # Let's use fp32 all the case without clamping
@click.option('--nobench', help='Disable cuDNN benchmarking', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--workers', help='DataLoader worker processes', metavar='INT', type=click.IntRange(min=0), default=3, show_default=True)
@click.option('-n', '--dry-run', help='Print training options and exit', is_flag=True)
def main(**kwargs):
# Initialize config.
print('==> start')
opts = dnnlib.EasyDict(kwargs) # Command line arguments.
c = dnnlib.EasyDict() # Main config dict.
c.G_kwargs = dnnlib.EasyDict(
class_name=None, z_dim=opts.latent_dim, w_dim=opts.latent_dim, mapping_kwargs=dnnlib.EasyDict())
c.D_kwargs = dnnlib.EasyDict(
class_name='training.networks_get3d.Discriminator', block_kwargs=dnnlib.EasyDict(),
mapping_kwargs=dnnlib.EasyDict(), epilogue_kwargs=dnnlib.EasyDict())
c.G_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0, 0.99], eps=1e-8)
c.D_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0, 0.99], eps=1e-8)
c.loss_kwargs = dnnlib.EasyDict(class_name='training.loss.StyleGAN2Loss')
c.data_loader_kwargs = dnnlib.EasyDict(pin_memory=True, prefetch_factor=2)
c.inference_vis = opts.inference_vis
# Training set.
if opts.inference_vis:
c.inference_to_generate_textured_mesh = opts.inference_to_generate_textured_mesh
c.inference_save_interpolation = opts.inference_save_interpolation
c.inference_compute_fid = opts.inference_compute_fid
c.inference_generate_geo = opts.inference_generate_geo
c.training_set_kwargs, dataset_name = init_dataset_kwargs(data=opts.data, opt=opts)
if opts.cond and not c.training_set_kwargs.use_labels:
raise click.ClickException('--cond=True requires labels specified in dataset.json')
c.training_set_kwargs.split = 'train' if opts.use_shapenet_split else 'all'
if opts.use_shapenet_split and opts.inference_vis:
c.training_set_kwargs.split = 'test'
c.training_set_kwargs.use_labels = opts.cond
c.training_set_kwargs.xflip = False
# Hyperparameters & settings.p
c.G_kwargs.one_3d_generator = opts.one_3d_generator
c.G_kwargs.n_implicit_layer = opts.n_implicit_layer
c.G_kwargs.deformation_multiplier = opts.deformation_multiplier
c.resume_pretrain = opts.resume_pretrain
c.D_reg_interval = opts.d_reg_interval
c.G_kwargs.use_style_mixing = opts.use_style_mixing
c.G_kwargs.dmtet_scale = opts.dmtet_scale
c.G_kwargs.feat_channel = opts.feat_channel
c.G_kwargs.mlp_latent_channel = opts.mlp_latent_channel
c.G_kwargs.tri_plane_resolution = opts.tri_plane_resolution
c.G_kwargs.n_views = opts.n_views
c.G_kwargs.render_type = opts.render_type
c.G_kwargs.use_tri_plane = opts.use_tri_plane
c.D_kwargs.data_camera_mode = opts.data_camera_mode
c.D_kwargs.add_camera_cond = opts.add_camera_cond
c.G_kwargs.tet_res = opts.tet_res
c.G_kwargs.geometry_type = opts.geometry_type
c.num_gpus = opts.gpus
c.batch_size = opts.batch
c.batch_gpu = opts.batch_gpu or opts.batch // opts.gpus
# c.G_kwargs.geo_pos_enc = opts.geo_pos_enc
c.G_kwargs.data_camera_mode = opts.data_camera_mode
c.G_kwargs.channel_base = c.D_kwargs.channel_base = opts.cbase
c.G_kwargs.channel_max = c.D_kwargs.channel_max = opts.cmax
c.G_kwargs.mapping_kwargs.num_layers = 8
c.D_kwargs.architecture = opts.d_architecture
c.D_kwargs.block_kwargs.freeze_layers = opts.freezed
c.D_kwargs.epilogue_kwargs.mbstd_group_size = opts.mbstd_group
c.loss_kwargs.gamma_mask = opts.gamma if opts.gamma_mask == 0.0 else opts.gamma_mask
c.loss_kwargs.r1_gamma = opts.gamma
c.G_opt_kwargs.lr = (0.002 if opts.cfg == 'stylegan2' else 0.0025) if opts.glr is None else opts.glr
c.D_opt_kwargs.lr = opts.dlr
c.metrics = opts.metrics
c.total_kimg = opts.kimg
c.kimg_per_tick = opts.tick
c.image_snapshot_ticks = c.network_snapshot_ticks = opts.snap
c.random_seed = c.training_set_kwargs.random_seed = opts.seed
c.data_loader_kwargs.num_workers = opts.workers
if opts.gpus <= 8:
c.network_snapshot_ticks = 200
# Sanity checks.
if c.batch_size % c.num_gpus != 0:
raise click.ClickException('--batch must be a multiple of --gpus')
if c.batch_size % (c.num_gpus * c.batch_gpu) != 0:
raise click.ClickException('--batch must be a multiple of --gpus times --batch-gpu')
if c.batch_gpu < c.D_kwargs.epilogue_kwargs.mbstd_group_size:
raise click.ClickException('--batch-gpu cannot be smaller than --mbstd')
if any(not metric_main.is_valid_metric(metric) for metric in c.metrics):
raise click.ClickException(
'\n'.join(['--metrics can only contain the following values:'] + metric_main.list_valid_metrics()))
# Base configuration.
c.ema_kimg = c.batch_size * 10 / 32
c.G_kwargs.class_name = 'training.networks_get3d.GeneratorDMTETMesh'
c.loss_kwargs.style_mixing_prob = 0.9 # Enable style mixing regularization.
c.loss_kwargs.pl_weight = 0.0 # Enable path length regularization.
c.G_reg_interval = 4 # Enable lazy regularization for G.
c.G_kwargs.fused_modconv_default = 'inference_only' # Speed up training by using regular convolutions instead of grouped convolutions.
# Performance-related toggles.
if opts.fp32:
c.G_kwargs.num_fp16_res = c.D_kwargs.num_fp16_res = 0
c.G_kwargs.conv_clamp = c.D_kwargs.conv_clamp = None
if opts.nobench:
c.cudnn_benchmark = False
# Description string.
desc = f'{opts.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}'
if opts.desc is not None:
desc += f'-{opts.desc}'
# Launch.
print('==> launch training')
launch_training(c=c, desc=desc, outdir=opts.outdir, dry_run=opts.dry_run)
# ----------------------------------------------------------------------------
#
if __name__ == "__main__":
main() # pylint: disable=no-value-for-parameter