From 770b01973d51cbc4b6363079522249868e1d8d7a Mon Sep 17 00:00:00 2001 From: aleexarias Date: Sun, 20 Oct 2024 14:40:31 +0200 Subject: [PATCH] update fpca references --- docs/refs.bib | 19 +++++++++++++++++++ skfda/preprocessing/dim_reduction/_fpca.py | 17 +++++++++-------- 2 files changed, 28 insertions(+), 8 deletions(-) diff --git a/docs/refs.bib b/docs/refs.bib index 005bc0112..ccb8e04e9 100644 --- a/docs/refs.bib +++ b/docs/refs.bib @@ -493,6 +493,25 @@ @inbook{ramsay+silverman_2005_registration keywords = {Multivariate analysis} } +@inbook{ramsay+silverman_2005_basisfuncexp, + title = {Basis function expansion of the functions}, + booktitle = {Functional Data Analysis}, + author = {Ramsay, James and Silverman, Bernard W.}, + year = {2005}, + series = {Springer {{Series}} in {{Statistics}}}, + edition = {Second}, + pages = {127--145}, + publisher = {{Springer-Verlag}}, + address = {{New York}}, + doi = {10.1007/b98888}, + url = {https://www.springer.com/gp/book/9780387400808}, + urldate = {2024-10-20}, + collaborator = {Ramsay, James and Silverman, Bernard W.}, + isbn = {978-0-387-40080-8}, + langid = {english}, + keywords = {Multivariate analysis} +} + @incollection{romeo+marzoljaen_2014_analisis, title = {{An\'alisis del viento y la niebla en el aeropuerto de Los Rodeos (Tenerife). Cambios y tendencias}}, booktitle = {{Cambio clim\'atico y cambio global.}}, diff --git a/skfda/preprocessing/dim_reduction/_fpca.py b/skfda/preprocessing/dim_reduction/_fpca.py index 5f8b09200..1eea15867 100644 --- a/skfda/preprocessing/dim_reduction/_fpca.py +++ b/skfda/preprocessing/dim_reduction/_fpca.py @@ -29,8 +29,10 @@ class FPCA( # noqa: WPS230 (too many public attributes) Class that implements functional principal component analysis for both basis and grid representations of the data. The parameters are shared - when fitting a FDataBasis or FDataGrid, except for - ``components_basis``. + when fitting a FDataBasis or FDataGrid, except for ``components_basis``. + + For more information about the implementation of the computation of the + first principal components see :footcite:ts:`silverman_2005_basisfuncexp`. Parameters: n_components: Number of principal components to keep from @@ -88,6 +90,10 @@ class FPCA( # noqa: WPS230 (too many public attributes) >>> fd = FDataGrid(data_matrix, grid_points) >>> fpca_grid = FPCA(2) >>> fpca_grid = fpca_grid.fit(fd) + + References: + .. footbibliography:: + """ def __init__( @@ -137,7 +143,7 @@ def _fit_basis( The eigenvalues associated with these principal components are also saved. For more details about how it is implemented please view the - referenced book. + book referenced in the class docstring. Args: X: The functional data object to be analysed. @@ -146,11 +152,6 @@ def _fit_basis( Returns: self - References: - .. [RS05-8-4-2] Ramsay, J., Silverman, B. W. (2005). Basis function - expansion of the functions. In *Functional Data Analysis* - (pp. 161-164). Springer. - """ # the maximum number of components is established by the target basis # if the target basis is available.