-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrays.py
295 lines (243 loc) · 10.8 KB
/
rays.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Copyright 2022 the Regents of the University of California, Nerfstudio Team and contributors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Some ray datastructures.
"""
import random
from dataclasses import dataclass, field
from typing import Callable, Dict, Literal, Optional, Tuple, Union, overload
import torch
from jaxtyping import Float, Int, Shaped
from torch import Tensor
from nerfstudio.utils.math import Gaussians, conical_frustum_to_gaussian
from nerfstudio.utils.tensor_dataclass import TensorDataclass
TORCH_DEVICE = Union[str, torch.device]
@dataclass
class Frustums(TensorDataclass):
"""Describes region of space as a frustum."""
origins: Float[Tensor, "*bs 3"]
"""xyz coordinate for ray origin."""
directions: Float[Tensor, "*bs 3"]
"""Direction of ray."""
starts: Float[Tensor, "*bs 1"]
"""Where the frustum starts along a ray."""
ends: Float[Tensor, "*bs 1"]
"""Where the frustum ends along a ray."""
pixel_area: Float[Tensor, "*bs 1"]
"""Projected area of pixel a distance 1 away from origin."""
offsets: Optional[Float[Tensor, "*bs 3"]] = None
"""Offsets for each sample position"""
def get_positions(self) -> Float[Tensor, "*batch 3"]:
"""Calculates "center" position of frustum. Not weighted by mass.
Returns:
xyz positions.
"""
pos = self.origins + self.directions * (self.starts + self.ends) / 2
if self.offsets is not None:
pos = pos + self.offsets
return pos
def get_start_positions(self) -> Float[Tensor, "*batch 3"]:
"""Calculates "start" position of frustum.
Returns:
xyz positions.
"""
return self.origins + self.directions * self.starts
def set_offsets(self, offsets):
"""Sets offsets for this frustum for computing positions"""
self.offsets = offsets
def get_gaussian_blob(self) -> Gaussians:
"""Calculates guassian approximation of conical frustum.
Returns:
Conical frustums approximated by gaussian distribution.
"""
# Cone radius is set such that the square pixel_area matches the cone area.
cone_radius = torch.sqrt(self.pixel_area) / 1.7724538509055159 # r = sqrt(pixel_area / pi)
if self.offsets is not None:
raise NotImplementedError()
return conical_frustum_to_gaussian(
origins=self.origins,
directions=self.directions,
starts=self.starts,
ends=self.ends,
radius=cone_radius,
)
@classmethod
def get_mock_frustum(cls, device: Optional[TORCH_DEVICE] = "cpu") -> "Frustums":
"""Helper function to generate a placeholder frustum.
Returns:
A size 1 frustum with meaningless values.
"""
return Frustums(
origins=torch.ones((1, 3)).to(device),
directions=torch.ones((1, 3)).to(device),
starts=torch.ones((1, 1)).to(device),
ends=torch.ones((1, 1)).to(device),
pixel_area=torch.ones((1, 1)).to(device),
)
@dataclass
class RaySamples(TensorDataclass):
"""Samples along a ray"""
frustums: Frustums
"""Frustums along ray."""
camera_indices: Optional[Int[Tensor, "*bs 1"]] = None
"""Camera index."""
deltas: Optional[Float[Tensor, "*bs 1"]] = None
""""width" of each sample."""
spacing_starts: Optional[Float[Tensor, "*bs num_samples 1"]] = None
"""Start of normalized bin edges along ray [0,1], before warping is applied, ie. linear in disparity sampling."""
spacing_ends: Optional[Float[Tensor, "*bs num_samples 1"]] = None
"""Start of normalized bin edges along ray [0,1], before warping is applied, ie. linear in disparity sampling."""
spacing_to_euclidean_fn: Optional[Callable] = None
"""Function to convert bins to euclidean distance."""
metadata: Optional[Dict[str, Shaped[Tensor, "*bs latent_dims"]]] = None
"""additional information relevant to generating ray samples"""
times: Optional[Float[Tensor, "*batch 1"]] = None
"""Times at which rays are sampled"""
def get_weights(self, densities: Float[Tensor, "*batch num_samples 1"]) -> Float[Tensor, "*batch num_samples 1"]:
"""Return weights based on predicted densities
Args:
densities: Predicted densities for samples along ray
Returns:
Weights for each sample
"""
delta_density = self.deltas * densities
alphas = 1 - torch.exp(-delta_density)
transmittance = torch.cumsum(delta_density[..., :-1, :], dim=-2)
transmittance = torch.cat(
[torch.zeros((*transmittance.shape[:1], 1, 1), device=densities.device), transmittance], dim=-2
)
transmittance = torch.exp(-transmittance) # [..., "num_samples"]
weights = alphas * transmittance # [..., "num_samples"]
weights = torch.nan_to_num(weights)
return weights
@overload
@staticmethod
def get_weights_and_transmittance_from_alphas(
alphas: Float[Tensor, "*batch num_samples 1"], weights_only: Literal[True]
) -> Float[Tensor, "*batch num_samples 1"]:
...
@overload
@staticmethod
def get_weights_and_transmittance_from_alphas(
alphas: Float[Tensor, "*batch num_samples 1"], weights_only: Literal[False] = False
) -> Tuple[Float[Tensor, "*batch num_samples 1"], Float[Tensor, "*batch num_samples 1"]]:
...
@staticmethod
def get_weights_and_transmittance_from_alphas(
alphas: Float[Tensor, "*batch num_samples 1"], weights_only: bool = False
) -> Union[
Float[Tensor, "*batch num_samples 1"],
Tuple[Float[Tensor, "*batch num_samples 1"], Float[Tensor, "*batch num_samples 1"]],
]:
"""Return weights based on predicted alphas
Args:
alphas: Predicted alphas (maybe from sdf) for samples along ray
weights_only: If function should return only weights
Returns:
Tuple of weights and transmittance for each sample
"""
transmittance = torch.cumprod(
torch.cat([torch.ones((*alphas.shape[:1], 1, 1), device=alphas.device), 1.0 - alphas + 1e-7], 1), 1
)
weights = alphas * transmittance[:, :-1, :]
if weights_only:
return weights
return weights, transmittance
@dataclass
class RayBundle(TensorDataclass):
"""A bundle of ray parameters."""
# TODO(ethan): make sure the sizes with ... are correct
origins: Float[Tensor, "*batch 3"]
"""Ray origins (XYZ)"""
directions: Float[Tensor, "*batch 3"]
"""Unit ray direction vector"""
pixel_area: Float[Tensor, "*batch 1"]
"""Projected area of pixel a distance 1 away from origin"""
camera_indices: Optional[Int[Tensor, "*batch 1"]] = None
"""Camera indices"""
nears: Optional[Float[Tensor, "*batch 1"]] = None
"""Distance along ray to start sampling"""
fars: Optional[Float[Tensor, "*batch 1"]] = None
"""Rays Distance along ray to stop sampling"""
metadata: Dict[str, Shaped[Tensor, "num_rays latent_dims"]] = field(default_factory=dict)
"""Additional metadata or data needed for interpolation, will mimic shape of rays"""
times: Optional[Float[Tensor, "*batch 1"]] = None
"""Times at which rays are sampled"""
def set_camera_indices(self, camera_index: int) -> None:
"""Sets all the camera indices to a specific camera index.
Args:
camera_index: Camera index.
"""
self.camera_indices = torch.ones_like(self.origins[..., 0:1]).long() * camera_index
def __len__(self) -> int:
num_rays = torch.numel(self.origins) // self.origins.shape[-1]
return num_rays
def sample(self, num_rays: int) -> "RayBundle":
"""Returns a RayBundle as a subset of rays.
Args:
num_rays: Number of rays in output RayBundle
Returns:
RayBundle with subset of rays.
"""
assert num_rays <= len(self)
indices = random.sample(range(len(self)), k=num_rays)
return self[indices]
def get_row_major_sliced_ray_bundle(self, start_idx: int, end_idx: int) -> "RayBundle":
"""Flattens RayBundle and extracts chunk given start and end indices.
Args:
start_idx: Start index of RayBundle chunk.
end_idx: End index of RayBundle chunk.
Returns:
Flattened RayBundle with end_idx-start_idx rays.
"""
return self.flatten()[start_idx:end_idx]
def get_ray_samples(
self,
bin_starts: Float[Tensor, "*bs num_samples 1"],
bin_ends: Float[Tensor, "*bs num_samples 1"],
spacing_starts: Optional[Float[Tensor, "*bs num_samples 1"]] = None,
spacing_ends: Optional[Float[Tensor, "*bs num_samples 1"]] = None,
spacing_to_euclidean_fn: Optional[Callable] = None,
) -> RaySamples:
"""Produces samples for each ray by projection points along the ray direction. Currently samples uniformly.
Args:
bin_starts: Distance from origin to start of bin.
bin_ends: Distance from origin to end of bin.
Returns:
Samples projected along ray.
"""
deltas = bin_ends - bin_starts
if self.camera_indices is not None:
camera_indices = self.camera_indices[..., None]
else:
camera_indices = None
shaped_raybundle_fields = self[..., None]
frustums = Frustums(
origins=shaped_raybundle_fields.origins, # [..., 1, 3]
directions=shaped_raybundle_fields.directions, # [..., 1, 3]
starts=bin_starts, # [..., num_samples, 1]
ends=bin_ends, # [..., num_samples, 1]
pixel_area=shaped_raybundle_fields.pixel_area, # [..., 1, 1]
)
ray_samples = RaySamples(
frustums=frustums,
camera_indices=camera_indices, # [..., 1, 1]
deltas=deltas, # [..., num_samples, 1]
spacing_starts=spacing_starts, # [..., num_samples, 1]
spacing_ends=spacing_ends, # [..., num_samples, 1]
spacing_to_euclidean_fn=spacing_to_euclidean_fn,
metadata=shaped_raybundle_fields.metadata,
times=None if self.times is None else self.times[..., None], # [..., 1, 1]
)
return ray_samples