Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

YOLOX postprocessing #218

Open
umairjavaid opened this issue Oct 22, 2021 · 0 comments
Open

YOLOX postprocessing #218

umairjavaid opened this issue Oct 22, 2021 · 0 comments

Comments

@umairjavaid
Copy link

How can I implement this post processing step in FastMOT

def yolox_nano_postprocess(self, prediction, num_classes=2, conf_thre=0.01, nms_thre=0.65, class_agnostic=True):
        print("#" * 100)
        box_corner = prediction.copy()
        print("box corner shape : {}".format(box_corner.shape))
        box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2
        box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2
        box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2
        box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2
        prediction[:, :, :4] = box_corner[:, :, :4]
        print("prediction shape : {}".format(prediction.shape))
​
        output = [None for _ in range(len(prediction))]
        print("output shape : {}".format(np.asarray(output).shape))
        for i, image_pred in enumerate(prediction):
            print("VALUE OF I : {}".format(i))
            # If none are remaining => process next image
            if not image_pred.shape[0]:
                continue
​
            print("image-pred shape : {}".format(image_pred.shape))
            # Get score and class with highest confidence
            print("image_pred[:, 5: 5 + num_classes] shape : {}".format(image_pred[:, 5: 5 + num_classes].shape))
            print("image_pred[:, 5: 5 + num_classes] type : {}".format(type(image_pred[:, 5: 5 + num_classes])))
            # class_conf, class_pred = np.max(image_pred[:, 5: 5 + num_classes], axis=0)
            class_conf_pred = image_pred[:, 5: 5 + num_classes]
            class_conf, class_pred = class_conf_pred[:, 0], class_conf_pred[:, 1]
            class_conf = class_conf.reshape(class_conf.shape[0], 1)
            class_pred = class_pred.reshape(class_pred.shape[0], 1)
            print("class conf shape : {}".format(class_conf.shape))
            print("calss pred shape : {}".format(class_pred.shape))
​
            conf_mask = (image_pred[:, 4] * class_conf.squeeze() >= conf_thre).squeeze()
            # conf_mask = conf_mask.reshape(conf_mask.shape[0], 1)
            print("conf mask shape : {}".format(conf_mask.shape))
            # Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred)
            print("image_pred[:, :5] shape : {}".format(image_pred[:, :5].shape))
            detections = np.concatenate((image_pred[:, :5], class_conf, class_pred.astype(float)), axis=1)
            print("detections shape : {}".format(detections.shape))
            detections = detections[conf_mask]
            print("detections2 shape : {}".format(detections.shape))
            if not detections.shape[0]:
                continue
​
            if True: #class_agnostic:
                nms_out_index = self.nms(detections[:, :4], detections[:, 4] * detections[:, 5], nms_thre)
                # print("nms out index in class agnostic true : {}".format(nms_out_index))
                # print("nms out index 0 in class agnostic true shape : {}".format(nms_out_index[0].shape))
                # print("nms out index 0 in class agnostic true shape : {}".format(nms_out_index[1].shape))
                # print("nms out index 0 in class agnostic true shape : {}".format(nms_out_index[2].shape))
​
                # detections = detections[nms_out_index]
                # print("detections afteer nms shape : {}".format(detections.shape))
​
                bboxes , confidences, classes = nms_out_index
                dets = []
                for bbox, conf, pred_cls in zip(bboxes , confidences, classes):
                    # print(type(bbox), type(conf[0]), type(pred_cls))
                    detection = [bbox, conf[0], int(pred_cls)]
                    # print(type(detection), detection)
                    dets.append(detection)
            if output[i] is None:
                output[i] = np.asarray(dets)
            else:
                output[i] = np.concatenate((output[i], np.asarray(dets)))
​
            print("output after nms shape : {}".format(np.asarray(output).shape))
​
        print("#" * 100)
​
        return output
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant