-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdhkam_test.go
220 lines (198 loc) · 5.13 KB
/
dhkam_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
package dhkam
import "bytes"
import "crypto/rand"
import "crypto/sha512"
import "fmt"
import "testing"
// Generating a shared key for AES256 with an HMAC-SHA512 requires 96
// bytes of keying material. This is the largest key likely to be in use,
// so we make sure we can at least generate this much key material.
const SharedKeySize = 96
const numTestCEK = 5 // number of test CEKs to generate
// TestSharedKey validates the computation of a shared key between two
// private keys. It generates two keys, computes the shared key between
// both pairs, and ensures that those two shared keys are the same.
func TestSharedKey(t *testing.T) {
prv1, err := GenerateKey(rand.Reader)
if err != nil {
fmt.Println(err.Error())
t.Fail()
}
prv2, err := GenerateKey(rand.Reader)
if err != nil {
fmt.Println(err.Error())
t.Fail()
}
sk1, err := prv1.SharedKey(rand.Reader, &prv2.PublicKey, SharedKeySize)
if err != nil {
fmt.Println(err.Error())
t.Fail()
}
sk2, err := prv2.SharedKey(rand.Reader, &prv1.PublicKey, SharedKeySize)
if err != nil {
fmt.Println(err.Error())
t.Fail()
}
if !bytes.Equal(sk1, sk2) {
fmt.Println("shared keys don't match")
t.Fail()
}
}
// TestImportPrivate generates a key, exports it, and reimports the key,
// verifying that it returns the same information.
func TestImportPrivate(t *testing.T) {
prv, err := GenerateKey(rand.Reader)
if err != nil {
fmt.Println(err.Error())
t.Fail()
}
out := prv.ExportPrivate()
prv1, err := ImportPrivate(rand.Reader, out)
if err != nil {
fmt.Println(err.Error())
t.Fail()
} else if prv.X.Cmp(prv1.X) != 0 {
fmt.Println(ErrInvalidPrivateKey.Error())
t.Fail()
} else if prv.PublicKey.A.Cmp(prv1.PublicKey.A) != 0 {
fmt.Println("dhkam: private key import failed.")
t.Fail()
}
}
// TestImportPublic generates a key, exports the public key, and reimports
// it, ensuring the two public keys match.
func TestImportPublic(t *testing.T) {
prv, err := GenerateKey(rand.Reader)
if err != nil {
fmt.Println(err.Error())
t.FailNow()
}
out := prv.Export()
pub, err := ImportPublic(out)
if err != nil {
fmt.Println(err.Error())
t.FailNow()
} else if pub.A.Cmp(prv.PublicKey.A) != 0 {
fmt.Println("dhkam: import public key failed")
t.FailNow()
}
}
// TestKEK generates two private keys, computes a KEK from each, and
// generates a pair of lists of CEKs between each pair of private keys. It
// validates the uniqueness of those keys (i.e., the CEKs in a single
// list should be unique) and that the two lists are identical.
func TestKEK(t *testing.T) {
prv1, err := GenerateKey(rand.Reader)
if err != nil {
fmt.Println(err.Error())
t.FailNow()
}
prv2, err := GenerateKey(rand.Reader)
if err != nil {
fmt.Println(err.Error())
t.FailNow()
}
pub1 := &prv1.PublicKey
pub2 := &prv2.PublicKey
kek1 := prv1.InitializeKEK(rand.Reader, pub2, KEKAES256CBCHMACSHA512, nil, sha512.New())
if kek1 == nil {
fmt.Println("dhkam: failed to initialise KEK")
t.FailNow()
}
kek2 := prv2.InitializeKEK(rand.Reader, pub1, KEKAES256CBCHMACSHA512, nil, sha512.New())
if kek2 == nil {
fmt.Println("dhkam: failed to initialise KEK")
t.FailNow()
}
keyList1 := make([][]byte, numTestCEK)
keyList2 := make([][]byte, numTestCEK)
for i := 0; i < numTestCEK; i++ {
keyList1[i], err = prv1.CEK(kek1)
if err != nil {
fmt.Println(err.Error())
t.FailNow()
}
keyList2[i], err = prv2.CEK(kek2)
if err != nil {
fmt.Println(err.Error())
t.FailNow()
}
}
for i := 0; i < numTestCEK; i++ {
for j := 0; j < numTestCEK; j++ {
if i == j {
continue
}
if bytes.Equal(keyList1[i], keyList1[j]) {
fmt.Println("dhkam: CEK isn't unique")
t.FailNow()
}
if bytes.Equal(keyList2[i], keyList2[j]) {
fmt.Println("dhkam: CEK isn't unique")
t.FailNow()
}
}
}
for i := 0; i < numTestCEK; i++ {
if !bytes.Equal(keyList1[i], keyList2[i]) {
fmt.Println("dhkam: CEK's don't match")
t.FailNow()
}
}
}
// Benchmark the generate of private keys.
func BenchmarkGenerateKey(b *testing.B) {
for i := 0; i < b.N; i++ {
_, err := GenerateKey(rand.Reader)
if err != nil {
fmt.Println(err.Error())
b.FailNow()
}
}
}
// Benchmark the computation of shared keys.
func BenchmarkSharedKey(b *testing.B) {
prv1, err := GenerateKey(rand.Reader)
if err != nil {
fmt.Println(err.Error())
b.FailNow()
}
prv2, err := GenerateKey(rand.Reader)
if err != nil {
fmt.Println(err.Error())
b.FailNow()
}
for i := 0; i < b.N; i++ {
_, err := prv1.SharedKey(rand.Reader, &prv2.PublicKey, SharedKeySize)
if err != nil {
fmt.Println(err.Error())
b.FailNow()
}
}
}
// Benchmark the generation of CEKs.
func BenchmarkCEKGeneration(b *testing.B) {
prv1, err := GenerateKey(rand.Reader)
if err != nil {
fmt.Println(err.Error())
b.FailNow()
}
prv2, err := GenerateKey(rand.Reader)
if err != nil {
fmt.Println(err.Error())
b.FailNow()
}
kek := prv1.InitializeKEK(rand.Reader, &prv2.PublicKey,
KEKAES256CBCHMACSHA512, nil, sha512.New())
if kek == nil {
fmt.Println("dhkam: failed to generate KEK")
b.FailNow()
}
for i := 0; i < b.N; i++ {
_, err := prv1.CEK(kek)
if err != nil {
fmt.Println(err.Error())
b.FailNow()
}
}
}