-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
669 lines (519 loc) · 23.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
# Create a spectral library
import numpy as np
import pandas as pd
from pepfrag import MassType, ModSite, Peptide
from pepfrag import IonType
from pyteomics import parser
from keras.models import model_from_json
from sklearn import linear_model
def mz_from_mass(mass, charge):
# Calculate the mass to charge
mz = (mass + (1.007276466879 * charge)) / charge
return mz
def load_model(model_json, model_h5):
# Open the json file with the model
json_file = open(model_json, 'r')
# Read in the json file
l_loaded_model_json = json_file.read()
# CLose the json file
json_file.close()
# Load the model structure from the json file
l_loaded_model = model_from_json(l_loaded_model_json)
# Load weights into new model
l_loaded_model.load_weights(model_h5)
# Print the model has been loaded
print("Loaded model from disk")
return l_loaded_model
def skip_peptide(peptide):
# Define the modifications that will not be compatible
skip_mods = ['-17.0265', '42.0106', '119.0041', '-18.0106', '304.2071']
# Determine if we will want to skip this peptide due to incompatible modification
skip = False
for mod in skip_mods:
if mod in peptide:
skip = True
return skip
def create_peptide(peptide, charge=3, tmt=False):
# Clean the peptide
clean_pep = peptide.replace('M[15.9949]', 'B')
clean_pep = clean_pep.replace('M(ox)', 'B')
clean_pep = clean_pep.replace('C[57.0215]', 'U')
clean_pep = clean_pep.replace('R[10.0082]', 'O')
clean_pep = clean_pep.replace('K[8.0142]', 'Z')
if '.' in clean_pep:
clean_pep = clean_pep.split('.')[1]
mod_list = []
residue = 1
rebuild_pep = ""
if tmt:
mod_list.append(ModSite(304.2071, "nterm", "TMTpro"))
for char in clean_pep:
if char == 'K' and tmt:
mod_list.append(ModSite(304.2071, residue, "TMTpro"))
rebuild_pep += 'K'
elif char == 'C':
mod_list.append(ModSite(57.02146, residue, "CAM"))
rebuild_pep += 'C'
elif char == 'B':
mod_list.append(ModSite(15.994915, residue, "Ox"))
rebuild_pep += 'M'
elif char == 'U':
mod_list.append(ModSite(57.02146, residue, "CAM"))
rebuild_pep += 'C'
elif char == 'O':
mod_list.append(ModSite(10.0082, residue, "HeavyR"))
rebuild_pep += 'R'
elif char == 'Z':
mod_list.append(ModSite(312.2213, residue, "HeavyK"))
rebuild_pep += 'K'
else:
rebuild_pep += char
residue += 1
peptide_obj = Peptide(
rebuild_pep,
charge,
mod_list,
mass_type=MassType.mono
)
frag_dict = {}
for frag in peptide_obj.fragment(ion_types={IonType.b: [], IonType.y: []}):
frag_dict[frag[1]] = frag[0]
return peptide_obj, frag_dict
def get_experimental_int_dict(frag_dict, spectrum, tol=20.0, tol_type='PPM', normalize=False):
# The dictionary to save the extracted intensities
frag_int_dict = {}
# Save the spectrum values for more clear access
spectrum_mz = spectrum['mz']
spectrum_int = spectrum['int']
# Save the base peak information
base_peak_mz = -1
base_peak_int = -1
# Save the total TIC
spectrum_tic = sum(spectrum['int'])
matched_tic = 0
tallest_frag_int = -1
# Iterate though the fragments and look for the mz in the
for frag, mz in frag_dict.items():
# Set the rang for the fragment ion to match
low_mz = mz - (mz * (tol * 0.000001))
high_mz = mz + (mz * (tol * 0.000001))
# If the tolerance is in Da then change it here
if tol_type == 'DA':
low_mz = mz - tol
high_mz = mz + tol
# Next we want to extract the peak that matches this fragment
tallest_mz = -1
tallest_int = -1
# This will get the index of the value near the low_mz
peak_index = np.searchsorted(spectrum_mz, low_mz)
# Do a quick check to make sure that the index is within the bound
if 0 <= peak_index < len(spectrum_mz):
# If it is then grab the values at the index
current_mz = spectrum_mz[peak_index]
current_int = spectrum_int[peak_index]
# Keep checking values until the mz is higher than the upper limit
while current_mz <= high_mz:
if current_int > tallest_int:
tallest_mz = current_mz
tallest_int = current_int
# Save the base peak for final normalization
if tallest_int > base_peak_int:
base_peak_mz = tallest_mz
base_peak_int = tallest_int
# Increment the counter
peak_index += 1
# Check the bounds again just to make sure before looping again
if peak_index < 0 or peak_index >= len(spectrum_mz):
break
# If we didn't find a peak just add a 0
if tallest_mz == -1:
frag_int_dict[frag] = 0
# If we did find a peak then add the tallest intensity
else:
frag_int_dict[frag] = tallest_int
matched_tic += tallest_int
if tallest_int > tallest_frag_int:
tallest_frag_int = tallest_int
# Calculate the fragment percent of the tic
matched_percent_tic = matched_tic / spectrum_tic
# If we want to normalize then divide every peak by the base peak
return_frag_int_dict = {}
if normalize and not tallest_frag_int == -1:
for frag, peak_int in frag_int_dict.items():
return_frag_int_dict[frag] = peak_int / tallest_frag_int
else:
return_frag_int_dict = frag_int_dict
# Return the frag intensity dictionary
return return_frag_int_dict, matched_percent_tic
def get_frag_ion_array():
# Set up the dimensions that will make up the array
ions = ['y', 'b']
charges = ['+', '2+', '3+']
ion_nums = list(np.arange(1, 30))
# Arrays that we will be filling out
ion_key_array = []
# Do all the position = 1 ions first
for ion_num in ion_nums:
# Do all the y1 ions before b1 ions
for ion in ions:
# Group the charge states for y1 ions first
for charge in charges:
# These ions keys should match up to the fragment dictionary we made before
ion_key = str(ion) + str(ion_num) + '[' + str(charge) + ']'
ion_key_array.append(ion_key)
return ion_key_array
def get_experimental_mz_array(frag_dict):
# Arrays that we will be filling out
ion_key_array = get_frag_ion_array()
ret_mz_array = []
# Now that we have the ions ordered correctly we can fill in the experimental array
for ion_key in ion_key_array:
# Check to see if the ion_key is in the frag_int_dict
if ion_key in frag_dict:
ret_mz_array.append(frag_dict[ion_key])
# If it is not present then it shouldn't be possible, and we can return a -1
else:
ret_mz_array.append(-1)
return ret_mz_array
def switch_aa(aa):
# This switches an amino acid with the integer that represents the amino acid in the ML model
switcher = {
'A': 1,
'C': 2,
'D': 3,
'E': 4,
'F': 5,
'G': 6,
'H': 7,
'I': 8,
'K': 9,
'L': 10,
'M': 11,
'N': 12,
'P': 13,
'Q': 14,
'R': 15,
'S': 16,
'T': 17,
'V': 18,
'W': 19,
'Y': 20,
'B': 21,
'X': 22
}
return switcher[aa]
def get_peptide_array(peptide_sequence, tmt=False):
# Skip the peptide if we can't handle the mods
if not skip_peptide(peptide_sequence):
# Clean the peptide, converting modifications into character representation that can be switched to integer
clean_pep = peptide_sequence.replace('M[15.9949]', 'B')
clean_pep = clean_pep.replace('M(ox)', 'B')
clean_pep = clean_pep.replace('C[57.0215]', 'C')
clean_pep = clean_pep.replace('R[10.0082]', 'R')
clean_pep = clean_pep.replace('K[8.0142]', 'K')
# If we are doing TMT then K becomes X
if tmt:
clean_pep = clean_pep.replace('K', 'X')
# If there are flanking residues then remove those
if '.' in clean_pep:
clean_pep = clean_pep.split('.')[1]
# For each amino acid switch with the integer value
peptide_array = []
for aa in clean_pep:
peptide_array.append(switch_aa(aa))
# Make the array into the standard 30 aa length
for i in range(len(peptide_array), 30):
peptide_array.append(0)
return peptide_array
def get_charge_array(pep_charge):
# One hot encoding of charge
pep_charge_array = []
# Make an array of length 6 with zeros
for i in range(0, 6):
pep_charge_array.append(False)
# Set the value associated with this charge to 1
pep_charge_array[pep_charge - 1] = True
# Return the charge array
return pep_charge_array
def peptides_to_spectral_library(peptide_data, loaded_model):
# List that will hold the inputs to do a batch prediction
expanded_row_list = []
peptide_mz_list = []
peptide_charge_list = []
peptide_array_list = []
charge_array_list = []
col_energy_array_list = []
ion_key_array_list = []
mz_array_list = []
# List of charges that we will predict
charges = [1, 2, 3]
# Same for all peptides
frag_ion_array = get_frag_ion_array()
# Iterate through the pin data
for index, row in peptide_data.iterrows():
# Get the peptide sequence and the charge from the pin data
peptide = row['peptide']
for charge in charges:
# Here we will create a peptide object from the sequence and also calculate the fragments
peptide_obj, frag_dict = create_peptide(peptide, charge=charge)
# Get any arrays that will always be the same per peptide
mz_array = get_experimental_mz_array(frag_dict)
peptide_array = get_peptide_array(peptide)
# Save the expanded row
expanded_row_list.append(row)
# Save the precursor mz and charge
peptide_mz_list.append(mz_from_mass(peptide_obj.mass, charge))
peptide_charge_list.append(charge)
# Save the ion key array
ion_key_array_list.append(frag_ion_array)
# Save the m/z array for the ions
mz_array_list.append(mz_array)
# Save the peptide array - the int representation of the aa
peptide_array_list.append(peptide_array)
# Save the one-hot vector for the charge
charge_array = get_charge_array(charge)
charge_array_list.append(charge_array)
# Calculate the ce to use for prediction
ce = .10 + (.05 * charge)
# Save the collision energy
col_energy_array_list.append([ce])
# Prepare the arrays needed to perform prediction
peptide_array = np.array(peptide_array_list)
charge_array = np.array(charge_array_list)
col_energy_array = np.array(col_energy_array_list)
# Perform the prediction of the spectrum
ml_input = [peptide_array, charge_array, col_energy_array]
prediction = loaded_model.predict(ml_input)
# Create the lists that will make up the library
lib_prec_mz = []
lib_prod_mz = []
lib_frag_annotation = []
lib_protein_id = []
lib_gene_name = []
lib_peptide_seq = []
lib_peptide_seq_mod = []
lib_prec_charge = []
lib_prod_ion_int = []
lib_norm_rt = []
lib_prec_ion_mob = []
lib_frag_series = []
lib_frag_charge = []
lib_frag_number = []
lib_frag_loss = []
lib_average_exp_rt = []
# Each entry in the mz_array_list is a unique peptide sequence and charge state
i = 0
for l_mz_array in mz_array_list:
# Get the associated arrays that were saved above
l_ion_key_array = ion_key_array_list[i]
l_prediction_int_array = prediction[i]
l_prec_mz = peptide_mz_list[i]
l_prec_charge = peptide_charge_list[i]
l_protein_id = expanded_row_list[i]['gene_id']
l_gene_name = expanded_row_list[i]['gene_symbol']
l_peptide_seq = expanded_row_list[i]['peptide'].replace('(ox)', '')
l_peptide_seq_mod = expanded_row_list[i]['peptide'].replace('(ox)', '(UniMod:35)').replace('C', 'C(UniMod:4)')
l_peptide_ion_mob = ''
l_peptide_rt = expanded_row_list[i]['normalized_retention_time']
l_peptide_expt_rt = ''
l_prod_mz_list = []
l_frag_annotation_list = []
l_frag_series_list = []
l_frag_charge_list = []
l_frag_number_list = []
l_frag_loss_list = []
l_prod_ion_int_list = []
# Add to the arrays but don't add impossible ions
j = 0
for mz in l_mz_array:
if not mz == -1:
# See if the predicted intensity is greater than 0
predicted_int = l_prediction_int_array[j]
if predicted_int > 0: # and int(frag_charge) <= int(prec_charge)
# Parse out the fragment ion information from this format y10[+];y10[2+];y10[3+]
frag_str = l_ion_key_array[j]
frag_charge_str = frag_str.split('[')[1].split(']')[0]
frag_charge = frag_charge_str.replace('3+', '3').replace('2+', '2').replace('+','1') # TODO: Clean up this code to convert to charge state
frag_series = frag_str[0]
frag_number = frag_str.replace(frag_series, '').replace('[' + frag_charge_str + ']', '')
l_prod_mz_list.append(mz)
l_frag_annotation_list.append(str(frag_series) + str(frag_number) + '^' + str(frag_charge))
l_frag_series_list.append(frag_series)
l_frag_charge_list.append(frag_charge)
l_frag_number_list.append(frag_number)
l_frag_loss_list.append('') # TODO: Update when we have fragment ions with neutral loss
l_prod_ion_int_list.append(predicted_int)
j += 1
l_norm_prod_ion_int_list = [10000*(x / max(l_prod_ion_int_list)) for x in l_prod_ion_int_list]
k = 0
for prod_mz in l_prod_mz_list:
# First get the general information from the input file
lib_protein_id.append(l_protein_id)
lib_gene_name.append(l_gene_name)
lib_peptide_seq.append(l_peptide_seq)
lib_peptide_seq_mod.append(l_peptide_seq_mod)
# Grab the precursor mz
lib_prec_mz.append(l_prec_mz)
lib_prec_charge.append(l_prec_charge)
# Other peptide specific parameters
lib_norm_rt.append(l_peptide_rt)
lib_prec_ion_mob.append(l_peptide_ion_mob)
lib_average_exp_rt.append(l_peptide_expt_rt)
# Grab fragment specific
lib_prod_mz.append(l_prod_mz_list[k])
lib_frag_annotation.append(l_frag_annotation_list[k])
lib_frag_series.append(l_frag_series_list[k])
lib_frag_charge.append(l_frag_charge_list[k])
lib_frag_number.append(l_frag_number_list[k])
lib_frag_loss.append(l_frag_loss_list[k])
lib_prod_ion_int.append(l_norm_prod_ion_int_list[k])
# Increment the counter on the frag ion list
k += 1
# Increment the counter on the unique peptide list
i += 1
spec_library_data = pd.DataFrame({
'PrecursorMz': lib_prec_mz,
'ProductMz': lib_prod_mz,
'Annotation': lib_frag_annotation,
'ProteinId': lib_protein_id,
'GeneName': lib_gene_name,
'PeptideSequence': lib_peptide_seq,
'ModifiedPeptideSequence': lib_peptide_seq_mod,
'PrecursorCharge': lib_prec_charge,
'LibraryIntensity': lib_prod_ion_int,
'NormalizedRetentionTime': lib_norm_rt,
'PrecursorIonMobility': lib_prec_ion_mob,
'FragmentType': lib_frag_series,
'FragmentCharge': lib_frag_charge,
'FragmentSeriesNumber': lib_frag_number,
'FragmentLossType': lib_frag_loss,
'AverageExperimentalRetentionTime': lib_average_exp_rt,
})
return spec_library_data
def peptides_to_spectral_library_irt(peptide_data, loaded_irt_model):
# Peptide array list to predict iRT values
peptide_array_list = []
# Iterate through the pin data
for index, row in peptide_data.iterrows():
# Get the peptide sequence and the charge from the pin data
peptide = row['peptide']
# Create the peptide array input for the ML model
peptide_array = get_peptide_array(peptide)
# Add the peptide array to the list of arrays to rescore
peptide_array_list.append(peptide_array)
# Do the prediction of the iRT values
irt_prediction_input = np.array(peptide_array_list)
irt_prediction = loaded_irt_model.predict(irt_prediction_input)
# Change the prediction results into a list that we can compare to the experimental RTs
irt_list = []
for irt_value_array in irt_prediction:
# Grab the value from the array
irt_list.append(float(irt_value_array)*100/2)
# Add the raw irt values to the pin data
peptide_data.insert(len(peptide_data.columns), "normalized_retention_time", np.array(irt_list))
return peptide_data
def peptides_to_spectral_library_ionmob(peptide_data, im_predictions):
# Create a dataframe that will be used for the merge, leaving out the mz for this
data_to_merge = pd.read_csv(im_predictions, sep='\t')
# Calculate the 1/K0 given reference data
data_to_merge = calculate_ion_mobility(data_to_merge)
# Do the merge with the input data
return_peptide_data = pd.merge(peptide_data, data_to_merge, how='left',
left_on=['ModifiedPeptideSequence', 'PrecursorCharge'],
right_on=['ModifiedPeptideSequence', 'PrecursorCharge'])
return_peptide_data['PrecursorIonMobility'] = return_peptide_data['IonMobility']
return_peptide_data = return_peptide_data.drop('IonMobility', axis=1)
# Return the data
return return_peptide_data
def calculate_ion_mobility(predicted_ccs_all):
# Use a previous file of IM values to do the coversion
reference_data_file = "./inputfiles/HLA_peptides_ionmobility_predictedCCS.csv"
reference_data_all = pd.read_csv(reference_data_file)
# Make the CCS predictions for both the reference and the predicted peptides
charges = [1, 2, 3]
return_data = pd.DataFrame(columns=predicted_ccs_all.columns)
for charge in charges:
reference_data = reference_data_all.loc[reference_data_all['PrecursorCharge'] == charge].reset_index(drop=True)
predicted_data = predicted_ccs_all.loc[predicted_ccs_all['PrecursorCharge'] == charge].reset_index(drop=True)
# Get the dataa in right format for regression
l_x = np.array(reference_data['ccs_predicted']).reshape(-1, 1)
l_y = np.array(reference_data['PrecursorIonMobility']).reshape(-1, 1)
# Fit line using all data
model = linear_model.LinearRegression()
model.fit(l_x, l_y)
# Robustly fit linear model with RANSAC algorithm
model_ransac = linear_model.RANSACRegressor(linear_model.LinearRegression())
model_ransac.fit(l_x, l_y)
calculated_ion_mobility = []
for index, row in predicted_data.iterrows():
predicted_ccs = row['PredictedCCS']
ion_mobility = float(model_ransac.predict([[predicted_ccs]]))
calculated_ion_mobility.append(ion_mobility)
predicted_data['IonMobility'] = calculated_ion_mobility
return_data = pd.concat([return_data, predicted_data])
return return_data
def add_variant_peptides(peptide_data):
# Make a temporary data frame that we will iterate through
temp_data = peptide_data.copy()
# Iterate through the data frame and make additional peptide variants based on oxidation of methionine
for index, row in temp_data.iterrows():
# Get the peptide sequence
peptide_sequence = row['peptide']
# Replace the oxM with M(ox) which is a bit easier to handle
isoforms = parser.isoforms(peptide_sequence, variable_mods={'ox': ['M']})
# For each of the isoforms make a new row within the initial data frame
for isoform in isoforms:
if 'ox' in isoform:
add_sequence = isoform.replace("oxM", "M(ox)")
row['peptide'] = add_sequence
peptide_data = pd.concat([peptide_data, pd.DataFrame([row])], ignore_index=True)
# Return the data
return peptide_data
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
# Input files needed to run the code
# Files needed to load the ML model
frag_model_json = "./models/model_MS_hcd.json"
frag_model_h5 = "./models/model_MS_hcd.h5"
# This will load the model and get it ready for predictions
loaded_frag_model = load_model(frag_model_json, frag_model_h5)
# Files need to load the iRT model
irt_model_json = "./models/model_IRT.json"
irt_model_h5 = "./models/model_IRT.h5"
# Load the iRT model
loaded_iRT_model = load_model(irt_model_json, irt_model_h5)
# File that contains peptides that are predicted binders from HLApollo
pep_file = "./inputfiles/A375_Apollo_predictedbinders_waitlist.tsv"
# File that contains CCS predictions from IonMob
ionmob_predictions = "./inputfiles/A375_Apollo_predictedbinders_waitlist_ionmob.tsv"
#######
# Code to create a spectral library based on prediction of spectra and RT
# Read in the file
print("Loading Peptide File")
peptide_input = pd.read_csv(pep_file, sep='\t', usecols=range(27), header=0)
# The peptides contain odd characters, just get rid of them for now
peptide_input['peptide'] = peptide_input['peptide'].str.replace('$', '')
peptide_input['peptide'] = peptide_input['peptide'].str.replace('X', '')
# Add variants for PTMs - right now it is just Oxidized M
print("Creating Variant Peptides")
print("Peptides before variants added: " + str(len(peptide_input)))
peptide_input_w_variants = add_variant_peptides(peptide_input)
print("Peptides after variants added: " + str(len(peptide_input_w_variants)))
# Add predicted irt with an in-house built Prosit model
print("Predicting iRT")
peptide_input_with_irt = peptides_to_spectral_library_irt(peptide_input_w_variants, loaded_iRT_model)
print("iRT Prediction Finished")
# Add in the predicted spectrum using an in-house version of the Prosit model
print("Predicting Spectra")
spectral_library = peptides_to_spectral_library(peptide_input_with_irt, loaded_frag_model)
print("Spectra Prediction Finished")
# Add in ion mobility using ionMob
print("Predicting Ion Mobility")
spectral_library_with_ionmob = peptides_to_spectral_library_ionmob(spectral_library, ionmob_predictions)
print("Ion Mobility Prediction Finished")
# Print out the spectral library
print("Printing Results")
spectral_library_with_ionmob.to_csv(pep_file.replace('.tsv', '_speclib.tsv'), sep='\t', index=False)
#######
# Completed
print("Done")