forked from williamfiset/Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CircularSegmentArea.java
102 lines (78 loc) · 3.64 KB
/
CircularSegmentArea.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
/**
* This file shows you how to find the area of a circular segment which lies on the circumference of
* a circle of radius r.
*
* <p>Time Complexity: O(1)
*
* @author William Fiset, [email protected]
*/
package com.williamfiset.algorithms.geometry;
import static java.lang.Math.*;
import java.awt.geom.Point2D;
public class CircularSegmentArea {
public static double circularSegmentArea(Point2D center, double r, Point2D p1, Point2D p2) {
double cx = center.getX(), cy = center.getY();
double x1 = p1.getX(), y1 = p1.getY();
double x2 = p2.getX(), y2 = p2.getY();
double circleArea = PI * r * r;
// To find the area of the circular segment cap we will find the area not occupied
// by the cap and compute pi*r^2 minus that area. The area not occupied by the circular
// cap can be divided into three parts:
// 1) A section pertaining to half the circle's area
// 2) The area of the triangle formed by (cx,cy), (x1,y1), (x2,y2)
// 3) The remaining slice which looks like a slice of pizza
double halfCircleArea = circleArea / 2.0;
double threePointsArea = triangleArea(cx, cy, x1, y1, x2, y2);
// Compute both vectors from the center of the circle
// to the points on the circumference of the circle.
double v1x = x1 - cx, v1y = y1 - cy;
double v2x = x2 - cx, v2y = y2 - cy;
// Turn one of the vector around to point in the opposite direction
v1x = -v1x;
v1y = -v1y;
// Compute the angle between the vectors and find the slice area
double angle = angleBetweenVectors(v1x, v1y, v2x, v2y);
double pizzaSliceArea = circleArea * (angle / (2.0 * PI));
return circleArea - (halfCircleArea + threePointsArea + pizzaSliceArea);
}
// Given three points a, b, c find the area of the triangle
public static double triangleArea(
double ax, double ay, double bx, double by, double cx, double cy) {
// Let v1 = <bx-ax, by-ay> and v2 = <cx-ax, cy-ay> be vectors
// Take the determinant of v1 and v2 to find the area of the
// parallelogram of the two vectors.
double v1_x = bx - ax;
double v1_y = by - ay;
double v2_x = cx - ax;
double v2_y = cy - ay;
// | v1_x v2_x |
// Determinant of | v1_y v2_y | is v1_x*v2_y - v2_x*v1_y
double determinant = v1_x * v2_y - v2_x * v1_y;
// Divide by two because we computed the area of the parallelogram
return abs(determinant) / 2.0;
}
// Return the smaller of the two angles between two 2D vectors in radians
private static double angleBetweenVectors(double v1x, double v1y, double v2x, double v2y) {
// To determine the angle between two vectors v1 and v2 we can use
// the following formula: dot(v1,v2) = len(v1)*len(v2)*cosθ and solve
// for θ where dot(a,b) is the dot product and len(c) is the length of c.
double dotproduct = (v1x * v2x) + (v1y * v2y);
double v1Length = sqrt(v1x * v1x + v1y * v1y);
double v2Length = sqrt(v2x * v2x + v2y * v2y);
double value = dotproduct / (v1Length * v2Length);
// Double value rounding precision may lead to the value we're about to pass into
// the arccos function to be slightly outside its domain, so do a safety check.
if (value <= -1.0) return PI;
if (value >= +1.0) return 0;
return acos(value);
}
public static void main(String[] args) {
Point2D center = new Point2D.Double(0, 0);
Point2D p1 = new Point2D.Double(2, 0);
Point2D p2 = new Point2D.Double(-2, 0);
System.out.println(circularSegmentArea(center, 2.0, p1, p2));
p1 = new Point2D.Double(0, 3);
p2 = new Point2D.Double(3, 0);
System.out.println(circularSegmentArea(center, 3.0, p1, p2));
}
}