-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathpreprocess.py
564 lines (446 loc) · 17 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
# Copyright 2018 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Processes raw data to build train, validation and test set.
Runs either locally or in Google Cloud DataFlow. Performs the following
operations:
- reads data from BigQuery
- adds hash key value to each row
- scales data
- shuffles and splits data in train / validation / test sets
- oversamples train data
- stores data as TFRecord
- splits and stores test data into labels and features files.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
from datetime import datetime
import json
import os
import posixpath
import random
import sys
import apache_beam as beam
from apache_beam.io import tfrecordio
import tensorflow as tf
import tensorflow_transform as tft
import tensorflow_transform.beam.impl as beam_impl
from tensorflow_transform.coders import example_proto_coder
from tensorflow_transform.tf_metadata import dataset_metadata
from tensorflow_transform.tf_metadata import dataset_schema
from constants import constants
from utils.datasettype import DatasetType
def preprocessing_fn(inputs):
"""Performs scaling of input features.
Args:
inputs: Dictionary of input columns mapping strings to `Tensor` or
`SparseTensor`s.
Returns:
Dictionary of output columns mapping strings to `Tensor` or `SparseTensor`.
"""
output = {}
for c in constants.FEATURE_COLUMNS:
output[c] = tft.scale_to_0_1(inputs[c])
output[constants.LABEL_COLUMN] = inputs[constants.LABEL_COLUMN]
output[constants.KEY_COLUMN] = inputs[constants.KEY_COLUMN]
return output
@beam.ptransform_fn
def check_size(p, name, path):
"""Performs checks on the input pipeline and stores stats in specfied path.
Checks performed: counts rows and derives class distribution.
Args:
p: PCollection, input pipeline.
name: string, unique identifier for the beam step.
path: string: path to store stats.
Returns:
PCollection
"""
class _Combine(beam.CombineFn):
"""Counts and take the average of positive classes in the pipeline."""
def create_accumulator(self):
return (0.0, 0.0)
def add_input(self, sum_count, inputs):
(s, count) = sum_count
return s + inputs, count + 1
def merge_accumulators(self, accumulators):
sums, counts = zip(*accumulators)
return sum(sums), sum(counts)
# We should not consider the case count == 0 as an error (class initialized
# with count == 0).
def extract_output(self, sum_count):
(s, count) = sum_count
return count, (1.0 * s / count) if count else float('NaN')
return (p
| 'CheckMapTo_1_{}'.format(name) >>
beam.Map(lambda x: x[constants.LABEL_COLUMN])
| 'CheckSum_{}'.format(name) >> beam.CombineGlobally(_Combine())
| 'CheckRecord_{}'.format(name) >> beam.io.WriteToText(
'{}.txt'.format(path)))
@beam.ptransform_fn
def shuffle_data(p):
"""Shuffles data from PCollection.
Args:
p: PCollection.
Returns:
PCollection of shuffled data.
"""
class _AddRandomKey(beam.DoFn):
def process(self, element):
yield (random.random(), element)
shuffled_data = (
p
| 'PairWithRandom' >> beam.ParDo(_AddRandomKey())
| 'GroupByRandom' >> beam.GroupByKey()
| 'DropRandom' >> beam.FlatMap(lambda k__vs: k__vs[1]))
return shuffled_data
@beam.ptransform_fn
def randomly_split(p, train_size, validation_size, test_size):
"""Randomly splits input pipeline in three sets based on input ratio.
Args:
p: PCollection, input pipeline.
train_size: float, ratio of data going to train set.
validation_size: float, ratio of data going to validation set.
test_size: float, ratio of data going to test set.
Returns:
Tuple of PCollection.
Raises:
ValueError: Train validation and test sizes don`t add up to 1.0.
"""
if train_size + validation_size + test_size != 1.0:
raise ValueError('Train validation and test sizes don`t add up to 1.0.')
class _SplitData(beam.DoFn):
def process(self, element):
r = random.random()
if r < test_size:
yield beam.pvalue.TaggedOutput(DatasetType.TEST.name, element)
elif r < 1 - train_size:
yield beam.pvalue.TaggedOutput(DatasetType.VAL.name, element)
else:
yield element
split_data = (
p | 'SplitData' >> beam.ParDo(_SplitData()).with_outputs(
DatasetType.VAL.name,
DatasetType.TEST.name,
main=DatasetType.TRAIN.name))
split_data_id = {}
for k in [DatasetType.TRAIN, DatasetType.VAL, DatasetType.TEST]:
split_data_id[k] = split_data[k.name]
return split_data_id
@beam.ptransform_fn
def read_data(p, bq_table, project_id):
"""Inputs raw data from BigQuery table into beam pipeline.
Args:
p: PCollection, pipeline to input data.
bq_table: string, name of table to read data from.
project_id: string, GCP project id.
Returns:
PCollection.
"""
column_list = ', '.join(constants.FEATURE_COLUMNS + [constants.LABEL_COLUMN])
query = 'SELECT {} FROM [{}:{}.{}]'.format(column_list, project_id,
constants.BQ_DATASET, bq_table)
data = (
p | 'ReadData' >> beam.io.Read(
beam.io.BigQuerySource(query=query, use_standard_sql=False)))
return data
def make_input_schema():
"""Builds the schema of the data read from BigQuery.
Appends key column to schema for inference.
Returns:
A dictionary mapping keys of column names to `tf.FixedLenFeature` instances.
"""
feature_spec = {}
for c in constants.FEATURE_COLUMNS:
feature_spec[c] = tf.FixedLenFeature(shape=[], dtype=tf.float32)
feature_spec[constants.LABEL_COLUMN] = tf.FixedLenFeature(
shape=[], dtype=tf.int64)
feature_spec[constants.KEY_COLUMN] = tf.FixedLenFeature(
shape=[], dtype=tf.int64)
return dataset_schema.from_feature_spec(feature_spec)
@beam.ptransform_fn
def oversampling(p):
"""Oversamples the positive class elements contained in the input pipeline.
Computes the current class distribution and re-sample positive class to
ensure a class distribution close to 50% / 50%. Samples each positive class
item w/ bernouilli distribution approximated with normal distribution
(mean=ratio, var=ratio, where ratio is the factor by which we want to increase
the number of positive samples).
Args:
p: PCollection.
Returns:
PCollection of re-balanced elements.
Raises:
ValueError: No positive class items found in pipeline.
"""
# Computes percentage of positive class to use as side input in main pipeline.
percentage = (
p
| 'ReduceToClass' >> beam.Map(lambda x: 1.0 * x[constants.LABEL_COLUMN])
| beam.CombineGlobally(beam.combiners.MeanCombineFn()))
class _Sample(beam.DoFn):
"""DoFn that performs resampling element by element.
Attributes:
process: Function performing the resampling at element level.
"""
def process(self, element, percent_positive):
if not percent_positive:
raise ValueError('No positive class items found in pipeline.')
ratio = 1.0 / percent_positive
n = (
max(int(random.gauss(mu=ratio, sigma=ratio**0.5)), 0)
if element[constants.LABEL_COLUMN] else 1)
for _ in range(n):
yield element
proc = (
p | 'DuplicateItemAndFlatten' >> beam.ParDo(
_Sample(), percent_positive=beam.pvalue.AsSingleton(percentage)))
return proc
@beam.ptransform_fn
def store_transformed_data(data, schema, path, name=''):
"""Stores data from input pipeline into TFRecord in the specified path.
Args:
data: `PCollection`, input pipeline.
schema: `DatasetMetadata` object, describes schema of the input pipeline.
path: string, where to write output.
name: string: name describing pipeline to be written.
Returns:
PCollection
"""
p = (
data
| 'WriteData{}'.format(name) >> tfrecordio.WriteToTFRecord(
path, coder=example_proto_coder.ExampleProtoCoder(schema.schema)))
return p
@beam.ptransform_fn
def split_features_labels(data, label_column, key_column):
"""Separates features from true labels in input pipeline for future inference.
Args:
data: PCollection, input pipeline.
label_column: string, name of column containing labels.
key_column: string, name of column containing keys.
Returns:
Dictionary mapping the strings 'labels' and 'features' to PCollection
objects.
"""
label_pipeline, features_pipeline = 'labels', 'features'
class _SplitFeaturesLabels(beam.DoFn):
def process(self, element, label_column, key_column):
yield beam.pvalue.TaggedOutput(label_pipeline, {
key_column: element[key_column],
label_column: element.pop(label_column)
})
yield element
data |= 'SplitFeaturesLabels' >> beam.ParDo(
_SplitFeaturesLabels(), label_column=label_column,
key_column=key_column).with_outputs(
label_pipeline, main=features_pipeline)
return {k: data[k] for k in (label_pipeline, features_pipeline)}
class AddHash(beam.DoFn):
"""DoFn that adds a hash key to each element based on the feature values.
Attributes:
process: Adds the hash key at the element level.
"""
def process(self, element, label_column, key_column, dtype):
hsh = 0
if dtype == DatasetType.TEST:
hsh = [element[k] for k in element if k != label_column]
hsh = hash(tuple(hsh))
element.update({key_column: hsh})
yield element
def preprocess(p, output_dir, check_path, data_size, bq_table, split_data_path,
project_id):
"""Main processing pipeline reading, processing and storing processed data.
Performs the following operations:
- reads data from BigQuery
- adds hash key value to each row
- scales data
- shuffles and splits data in train / validation / test sets
- oversamples train data
- stores data as TFRecord
- splits and stores test data into labels and features files
Args:
p: PCollection, initial pipeline.
output_dir: string, path to directory to store output.
check_path: string, path to directory to store data checks.
data_size: tuple of float, ratio of data going respectively to train,
validation and test sets.
bq_table: string, name of table to read data from.
split_data_path: string, path to directory to store train, validation and
test raw datasets.
project_id: string, GCP project id.
Raises:
ValueError: No test dataset found in pipeline output.
"""
train_size, validation_size, test_size = data_size
data = (p | 'ReadData' >> read_data(bq_table=bq_table, project_id=project_id))
_ = data | 'StoreData' >> beam.io.WriteToText(
posixpath.join(output_dir, check_path, 'processed_data.txt'))
split_data = (
data | 'RandomlySplitData' >> randomly_split(
train_size=train_size,
validation_size=validation_size,
test_size=test_size))
for k in split_data:
split_data[k] |= 'AddHash_{}'.format(k.name) >> beam.ParDo(
AddHash(),
label_column=constants.LABEL_COLUMN,
key_column=constants.KEY_COLUMN,
dtype=k)
# Splits test data into features pipeline and labels pipeline.
if DatasetType.TEST not in split_data:
raise ValueError('No test dataset found in pipeline output.')
test_data = (
split_data.pop(DatasetType.TEST)
| 'SplitFeaturesLabels' >> split_features_labels(constants.LABEL_COLUMN,
constants.KEY_COLUMN))
# Stores test data features and labels pipeline separately.
for k in test_data:
_ = (
test_data[k]
| 'ParseJsonToString_{}'.format(k) >> beam.Map(json.dumps)
| 'StoreSplitData_{}'.format(k) >> beam.io.WriteToText(
posixpath.join(
output_dir, split_data_path, 'split_data_{}_{}.txt'.format(
DatasetType.TEST.name, k))))
meta_data = dataset_metadata.DatasetMetadata(make_input_schema())
transform_fn = (
(split_data[DatasetType.TRAIN], meta_data)
| 'AnalyzeTrainDataset' >> beam_impl.AnalyzeDataset(preprocessing_fn))
_ = (
transform_fn
| 'WriteTransformFn' >> tft.beam.tft_beam_io.WriteTransformFn(
posixpath.join(output_dir, constants.PATH_INPUT_TRANSFORMATION)))
_ = (
meta_data
| 'WriteInputMetadata' >> tft.beam.tft_beam_io.WriteMetadata(
posixpath.join(output_dir, constants.PATH_INPUT_SCHEMA), pipeline=p))
transformed_metadata, transformed_data = {}, {}
for k in [DatasetType.TRAIN, DatasetType.VAL]:
transformed_data[k], transformed_metadata[k] = (
((split_data[k], meta_data), transform_fn)
| 'Transform{}'.format(k) >> beam_impl.TransformDataset())
transformed_data[DatasetType.TRAIN] = (
transformed_data[DatasetType.TRAIN]
| 'OverSampleTraining' >> oversampling())
for k in transformed_data:
_ = (
transformed_data[k]
| 'ShuffleData{}'.format(k) >> shuffle_data()
| 'StoreData{}'.format(k) >> store_transformed_data(
schema=transformed_metadata[k],
path=posixpath.join(output_dir,
constants.PATH_TRANSFORMED_DATA_SPLIT[k]),
name=DatasetType(k).name))
for k in transformed_data:
_ = (
transformed_data[k] | 'CheckSize{}'.format(k.name) >> check_size(
name=DatasetType(k).name,
path=posixpath.join(output_dir, check_path, k.name)))
def parse_arguments(argv):
"""Parses execution arguments and replaces default values.
Args:
argv: Input arguments from sys.
Returns:
Parsed arguments.
"""
parser = argparse.ArgumentParser()
parser.add_argument(
'--bq_table',
default='raw_data',
help='Name of BigQuery table to read data from.')
parser.add_argument(
'--check_path',
default='check',
help='Directory in which to write data checks.')
parser.add_argument(
'--cloud',
default=False,
action='store_true',
help='Run preprocessing on the cloud.')
parser.add_argument(
'--output_dir',
default='output-{}'.format(datetime.now().strftime('%Y%m%d%H%M%S')),
help='Directory in which to write outputs.')
parser.add_argument(
'--test_size', default=0.15, help='Fraction of data going into test set.')
parser.add_argument(
'--train_size',
default=0.7,
help='Fraction of data going into train set.')
parser.add_argument(
'--validation_size',
default=0.15,
help='Fraction of data going into validation set.')
parser.add_argument(
'--split_data_path',
default='split_data',
help='Directory in which to write data once split.')
parser.add_argument(
'--project_id',
required=True,
help='Google Cloud project ID.')
parser.add_argument(
'--bucket_id',
required=True,
help='Google Cloud bucket ID.')
args, _ = parser.parse_known_args(args=argv[1:])
return args
def main():
"""Parses execution arguments, creates and runs processing pipeline.
Cheks current OS. Posix OS is required for local and GCP paths consistency.
Raises:
OSError: Posix OS required.
ValueError: Train validation and test size dont add up to 1.0.
"""
if os.name != 'posix':
raise OSError('Posix OS required.')
args = parse_arguments(sys.argv)
if args.train_size + args.validation_size + args.test_size != 1.0:
raise ValueError('Train validation and test size dont add up to 1.0.')
output_dir = args.output_dir
if args.cloud:
output_dir = posixpath.join('gs://', args.bucket_id, output_dir)
runner = 'DataflowRunner'
else:
output_dir = posixpath.join('.', output_dir)
runner = 'DirectRunner'
temp_dir = posixpath.join(output_dir, 'tmp')
options = {
'project':
args.project_id,
'job_name':
'{}-{}'.format(args.project_id,
datetime.now().strftime('%Y%m%d%H%M%S')),
'setup_file':
posixpath.abspath(
posixpath.join(posixpath.dirname(__file__), 'setup.py')),
'temp_location':
temp_dir,
'save_main_session':
True
}
pipeline_options = beam.pipeline.PipelineOptions(flags=[], **options)
with beam.Pipeline(runner, options=pipeline_options) as p:
with beam_impl.Context(temp_dir=temp_dir):
preprocess(
p=p,
output_dir=output_dir,
check_path=args.check_path,
data_size=(args.train_size, args.validation_size, args.test_size),
bq_table=args.bq_table,
split_data_path=args.split_data_path,
project_id=args.project_id)
if __name__ == '__main__':
main()