-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathlime_utils.py
375 lines (338 loc) · 16.1 KB
/
lime_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
LIME Functionality for CMLA Classification Models
"""
import json
import os
import dill
import numpy as np
import tensorflow as tf
from bs4 import BeautifulSoup as Soup
from google.cloud import storage
def get_model_path(cfg, job_id, trained_model_location):
"""
Gets the trained model path from the job_dir and job_id
Arguments:
cfg: dict, Configurations from yaml file
job_id: string, Job ID of the training job
trained_model_location: string, Path of the trained model
i.e. export directory of training job
Returns:
model_path: string, path of the trained model"""
storage_client = storage.Client.from_service_account_json(
cfg['service_account_json_key'])
bucket = storage_client.get_bucket(cfg['bucket_name'].replace('gs://', ''))
job_dir = trained_model_location.replace(cfg['bucket_name'] + '/', '')
prefix_path = os.path.join(job_dir, job_id)
blobs = bucket.list_blobs(prefix=prefix_path)
model_path = [b.name.replace(prefix_path, '')
for b in blobs][1].replace('/', '')
return model_path
def download_file_from_gcp(bucket_name, source_blob_name):
"""Downloads the given file from GCS bucket
Arguments:
bucket_name: str, name of the GCS bucket
source_blob_name: str, path of the blob to be downloaded
Returns:
output_file_name: str, name of the downloaded file"""
try:
storage_client = storage.Client()
bucket = storage_client.get_bucket(bucket_name)
blob_name = bucket.blob(source_blob_name)
output_file_name = source_blob_name.split('/')[-1]
blob_name.download_to_filename(output_file_name)
return output_file_name
except IOError:
raise AssertionError(
"ERROR: Please Provide a valid GCP path and make sure the file exists in bucket")
except Exception:
raise AssertionError(
"ERROR: Kindly verify the access to GCP bucket")
def download_folder_from_gcp(bucket_name, folder_name):
"""Downloads the given folder from GCS bucket
Arguments:
bucket_name: str, name of the GCS bucket
folder_name: str, path of the folder to be downloaded"""
try:
storage_client = storage.Client()
bucket = storage_client.get_bucket(bucket_name)
blobs = bucket.list_blobs(prefix=folder_name)
for blob in blobs:
directory = '/'.join((blob.name).split('/')[:-1]) + '/'
if not os.path.exists(directory):
os.makedirs(directory)
blob.download_to_filename(blob.name)
except IOError:
raise AssertionError(
"ERROR: Please Provide a valid GCP path and make sure the folder exists in bucket")
except Exception:
raise AssertionError(
"ERROR: Kindly verify the access to GCP bucket")
def upload_to_gcp(bucket_name, source_file_name):
"""Uploads the file back to Cloud Storage
Arguments:
bucket_name: str, name of the GCS bucket
source_file_name: str, path of the source blob"""
storage_client = storage.Client()
bucket = storage_client.get_bucket(bucket_name)
blob = bucket.blob('lime/' + source_file_name)
blob.upload_from_filename(source_file_name)
os.remove(source_file_name)
def getting_signature(export_dir):
"""Generates the Signature def of the imported saved model
Arguments:
export_dir: str, path of the export directory
Returns:
signature: tf.saved_model.signature_def object"""
predictor = tf.contrib.predictor.from_saved_model(export_dir=export_dir)
graph = predictor.graph
col_list = [a.name for a in graph.as_graph_def().node if a.op ==
'Placeholder']
inputs = dict()
for t in col_list:
inputs[t] = tf.saved_model.build_tensor_info(
graph.get_tensor_by_name(str(t) + ':0'))
output_name = [
n.name for n in graph.as_graph_def().node if n.op == 'Softmax'][0]
output = tf.saved_model.build_tensor_info(
graph.get_tensor_by_name(str(output_name) + ':0'))
signature = tf.saved_model.build_signature_def(
inputs=inputs, outputs={
'output': output}, method_name='Classification')
return signature
def get_explainer(export_dir):
"""
Creates LIME explainer based on input data
Arguments:
export_dir: str, path of the directory of saved model
Returns:
explainer: lime object, A Lime explainer created while training
dict_mapping: dict, mapping dictionary of categorical columns
feature_names: list, A list of names of features
"""
with open(os.path.join(export_dir, 'assets.extra', 'lime_explainer'), 'rb') as f:
explainer = dill.load(f)
dict_mapping = dill.load(f)
feature_names = dill.load(f)
return explainer, dict_mapping, feature_names
def lime_predictor(explainer, dict_mapping, feature_names, data_point, predictor):
"""
Creates an Explanation on given datapoint
Arguments:
explainer: lime object, A Lime explainer created while training
dict_mapping: dict, mapping dictionary of categorical columns
feature_names: list, A list of names of features
data_point: dict, A dictionary containing features on which prediction is made
predictor: tf.contrib.predictor object, A predictor function of the saved model
"""
for key, value in data_point.items():
if key in dict_mapping.keys():
data_point[key] = dict_mapping[key].keys()[
dict_mapping[key].values().index(str(value))]
feat_list = list()
def predict_function(X):
"""
Creates a Probability predicting function from the saved model
"""
input_dict = dict()
for index, feature_name in enumerate(feature_names):
if feature_name in dict_mapping.keys():
feat_list = list()
for cat_value in X[:, index]:
feat_list.append(
dict_mapping[feature_name][int(cat_value)])
input_dict[feature_name] = np.array(feat_list)
else:
input_dict[feature_name] = X[:, index]
return predictor(input_dict)['output']
for name in feature_names:
feat_list.append(data_point[name])
exp = explainer.explain_instance(
np.array(feat_list),
predict_function,
num_features=5)
return exp
def prediction_without_report(data_point, predictor):
"""
Creates prediction of the Datapoint without LIME report
Arguments:
data_point: dict, A dictionary containing features on which prediction is made
predictor: tf.contrib.predictor object, A predictor function of the saved model
Returns;
return_dict: dict, A dictionary containing the predictions
"""
new_dict = dict()
for key, value in data_point.items():
new_dict[key] = (value,)
return_dict = dict()
for index, result in enumerate(predictor(new_dict)['output'][0]):
return_dict['class_' + str(index)] = float("{0:.4f}".format(result))
return return_dict
def adding_text_to_html(html_file, explanation, dict_mapping):
"""Adding Text Explanation to HTML file
Arguments:
html_file: str, html file generated from explainer
explanation: lime object, lime explanation generated from lime explainer
dict_mapping: dict, mapping dictionary of categorical columns
Returns: str, html file with text explanations"""
text_exp = str()
for (feature, importance) in explanation.as_list():
if feature.split('=')[0] in dict_mapping.keys():
text_exp += 'Categorical feature "{}" being "{}" is contributing to the prediction with importance of \
{} <br>'.format(feature.split('=')[0], feature.split('=')[1], "{0:.3f}".format(importance))
text_exp += ' \n'
else:
text_exp += 'Continous Feature "{}" has been contributing to the prediction with importance of \
{} <br>'.format(feature, "{0:.3f}".format(importance))
text_exp += ' \n'
cleaned_html = Soup(html_file, features="lxml")
string = '''<div style="text-align:right;"><a href="#" onclick="document.getElementById('text-explanation').classList.toggle('is-hidden')">info</a></div>
<style>
.is-hidden{display:none;}
</style>
<div id="text-explanation" style="text-align:right;" class="is-hidden">''' + str(text_exp) + ''' </div>'''
cleaned_html.body.append(Soup(string, 'html.parser'))
return str(cleaned_html)
def save(gcp_bucket_name, html_file, path):
"""Writing a HTML object to html file
Arguments:
gcp_bucket_name : str, name of the bucket in which file is to be saved
html_file: str, generated html file as string,
path: str, local path where the file is to stored"""
with open(path, 'w') as file:
file.write(str(html_file))
if gcp_bucket_name:
try:
upload_to_gcp(gcp_bucket_name, path)
except ValueError:
raise AssertionError(
"ERROR: Kindly verify the access to GCP bucket")
def visualization(cfg, job_id, model_dir, predict_json, batch_prediction, d_points, name):
"""End-to-End Script which generates visualization of the predictions using LIME
Arguments:
cfg: dict, Dictionary containing the configurations of the API
job_id: str, Job ID assigned while training
model_dir: str, model directory to be used for prediction and visualization
predict_json: str, path of the Json data on which predictions are to be visualized
batch_prediction: bool, Boolean value indicating whether the provided data is a batch or single file
d_points: list, list of ids of the data where visualization is required or can specify all like ['All']
name: str, name of the output_files required
Returns:
result: dict, A output dictionary containing the predicted results"""
gcp_bucket_name = cfg.get('bucket_name', None)
result = dict()
if gcp_bucket_name:
export_dir = get_model_path(cfg, job_id, model_dir)
download_folder_from_gcp(gcp_bucket_name, export_dir)
download_file_from_gcp(gcp_bucket_name, predict_json)
else:
export_dir = model_dir
explainer, dict_mapping, feature_names = get_explainer(export_dir)
predictor = tf.contrib.predictor.from_saved_model(
export_dir=export_dir, signature_def=getting_signature(export_dir))
with open(predict_json, 'rb') as f:
predict_point = json.load(f)
if batch_prediction is False:
explanation = lime_predictor(explainer=explainer, dict_mapping=dict_mapping,
feature_names=feature_names, data_point=predict_point, predictor=predictor)
html_file = explanation.as_html()
save(gcp_bucket_name, adding_text_to_html(
html_file, explanation, dict_mapping), str(name) + '.html')
predict_point_copy = predict_point.copy()
result['prediction'] = {'saved_report': str(name) + '.html'}
result['prediction'].update(
{'output': (prediction_without_report(predict_point_copy, predictor))})
else:
result = dict()
for key, value in predict_point.items():
for extra_key in [a for a in value.keys() if a not in feature_names]:
del value[extra_key]
value_copy = value.copy()
if key in d_points or d_points == ['ALL']:
explanation = lime_predictor(
explainer=explainer, dict_mapping=dict_mapping, feature_names=feature_names, data_point=value,
predictor=predictor)
output_path_name = '{}_{}.html'.format(name, key)
html_file = explanation.as_html()
save(gcp_bucket_name, adding_text_to_html(
html_file, explanation, dict_mapping), output_path_name)
result[key] = {'saved_report': output_path_name}
result[key].update(
{'output': (prediction_without_report(value_copy, predictor))})
else:
result[key] = {
'output': (prediction_without_report(value_copy, predictor))}
try:
os.remove(export_dir)
os.remove(predict_json)
except OSError:
print("Couldn't clear downloaded files")
return result
def visualization_2(cfg, job_id, model_dir, predict_json, batch_prediction, name):
"""End-to-End Script which generates results from given data-points
Arguments:
cfg: dict, Dictionary containing the configurations of the API
job_id: str, Job ID assigned while training
model_dir: str, path of the export_dir of the trained model
predict_json: str, path of the Json data on which predictions are to be visualized
batch_prediction: bool, Boolean value indicating whether the provided data is a batch or single file
name: str, name of the output_files required
Returns:
result: list, A list containing the result of the model"""
gcp_bucket_name = cfg.get('bucket_name', None)
result = list()
if gcp_bucket_name:
export_dir = get_model_path(cfg, job_id, model_dir)
download_folder_from_gcp(gcp_bucket_name, export_dir)
download_file_from_gcp(gcp_bucket_name, predict_json)
else:
export_dir = model_dir
explainer, dict_mapping, feature_names = get_explainer(export_dir)
predictor = tf.contrib.predictor.from_saved_model(
export_dir=export_dir, signature_def=getting_signature(export_dir))
with open(predict_json, 'r') as f:
predict_point = json.load(f)
if batch_prediction is False:
explanation = lime_predictor(explainer=explainer, dict_mapping=dict_mapping,
feature_names=feature_names, data_point=predict_point, predictor=predictor)
html_file = explanation.as_html()
data_point_copy = predict_point.copy()
save(gcp_bucket_name, adding_text_to_html(
html_file, explanation, dict_mapping), str(name) + '.html')
result.append(prediction_without_report(data_point_copy, predictor))
else:
result = list()
for index, prediction_point in enumerate(predict_point):
prediction_point_copy = prediction_point.copy()
for extra_key in [a for a in prediction_point.keys() if a not in feature_names]:
del prediction_point_copy[extra_key]
result.append(prediction_without_report(
prediction_point_copy, predictor))
if prediction_point['report'] == 1:
for extra_key in [a for a in prediction_point.keys() if a not in feature_names]:
del prediction_point[extra_key]
explanation = lime_predictor(explainer=explainer, dict_mapping=dict_mapping,
feature_names=feature_names, data_point=prediction_point,
predictor=predictor)
html_file = explanation.as_html()
output_path_name = '{}_{}.html'.format(name, index)
save(gcp_bucket_name, adding_text_to_html(
html_file, explanation, dict_mapping), output_path_name)
try:
os.remove(export_dir)
os.remove(predict_json)
except OSError:
print("Couldn't clear downloaded files")
return result