-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathllama_4b_evaluate.py
77 lines (59 loc) · 2.62 KB
/
llama_4b_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import argparse
import sys
import torch
from datautils import get_loaders
from evaluate import llama_eval
from model import load_llama_model
if not torch.cuda.is_available():
print("CUDA is needed to run the model.")
sys.exit(0)
parser = argparse.ArgumentParser("Run inference with low-bit LLaMA models.")
parser.add_argument("-s", "--model-size", choices=["3b", "3B", "7b", "7B", "30b", "30B", "70b", "70B"], required=False, default="7B", type=str, help="Which model size to use.")
parser.add_argument("-v", "--llama-version", choices=[1, 2], required=False, default=2, type=int, help="which version to evaluate")
parser.add_argument("-g", "--groupsize", choices=[8, 6, 32], required=False, default=32, type=int, help="Specify quantization groups")
args = parser.parse_args()
args.model_size = args.model_size.upper()
if args.llama_version == 1:
model_uri = f'GreenBitAI/LLaMA-{args.model_size}-4bit'
if args.model_size in ["3b", "3B", "30b", "30B"]:
model_uri = model_uri + f'-groupsize{args.groupsize}'
else:
model_uri = f'GreenBitAI/LLaMA-2-{args.model_size}-4bit'
if args.model_size in ["3b", "3B", "7b", "7B", "70b", "70B"]:
model_uri = model_uri + f'-groupsize{args.groupsize}'
else:
raise NotImplemented
if args.groupsize == 32:
asym = True
else:
asym = False
bits = 4
if bits == 2:
if asym:
double_groupsize = -1
else:
if args.groupsize == 32:
double_groupsize=32
else:
if args.llama_version == 1:
double_groupsize=64
else:
double_groupsize=32
else:
if args.model_size in ["3b", "3B"]:
double_groupsize=64
elif args.model_size in ["7b", "7B"]:
double_groupsize=256
v1 = (args.llama_version==1) and args.model_size in ["7b", "7B"]
cache_dir = './cache'
model, tokenizer = load_llama_model(model_uri, cache_dir=cache_dir, groupsize=args.groupsize, double_groupsize=double_groupsize, v1=v1, bits=4, half=True, asym=asym)
model.eval()
print("Loading dataset 'c4' for evaluation...")
_, c4_testloader = get_loaders('c4', model=model_uri, cache_dir=cache_dir, nsamples=128, seed=0, seqlen=2048)
llama_eval(model, c4_testloader)
print("Loading dataset 'wikitext2' for evaluation...")
_, wikitext2_testloader = get_loaders('wikitext2', model=model_uri, cache_dir=cache_dir, nsamples=128, seed=0, seqlen=2048)
llama_eval(model, wikitext2_testloader)
print("Loading dataset 'ptb' for evaluation...")
_, ptb_testloader = get_loaders('ptb', model=model_uri, cache_dir=cache_dir, nsamples=128, seed=0, seqlen=2048)
llama_eval(model, ptb_testloader)