-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplatereport.py
executable file
·497 lines (446 loc) · 19.2 KB
/
platereport.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
#!/usr/bin/python3
# vim:ts=4:et
#Stage 3: Export regions. Requires file plates-001.tif and seeds-mask-001.tif. Creates 24 files seeds-001-...-.tif and plant-regions-001.png
# Copyright (C) 2013 Milos Sramek <[email protected]>
# Licensed under the GNU LGPL v3 - http://www.gnu.org/licenses/gpl.html
# - or any later version.
from importlib import reload
from collections import defaultdict
from tifffile import TiffWriter, TiffFile
#import SimpleITK as sitk
import numpy as np
import sys, glob, re, os, getopt, csv, tempfile
import cv2, math, imageio
from ipdb import set_trace as trace
import phlib
reload(phlib)
from phlib import disp,plot
#from skimage import morphology, filters
from skimage import measure
#import imageio
import scipy.ndimage as ndi
#import scipy.stats as stats
#from scipy.signal import medfilt
#import guiqwt.pyplot as plt
import matplotlib.pyplot as plt
import plateplantseg
reload(plateplantseg)
#type batch set_nr. plate_nr. plate_id acc_id row column
type,batch,set_nr,plate_nr,plate_id,acc_id,row,column = range(8)
def loadCsv(ifile):
#trace()
acc=defaultdict(list)
with open(ifile, 'rt', encoding='utf-8') as csvfile:
reader = csv.reader(csvfile, delimiter='\t', quotechar='"',quoting=csv.QUOTE_MINIMAL)
for row in reader:
if row[0] == "type": continue
acc[row[acc_id]].append(row)
return acc
def img3mask(img, mask):
if len(img) != len(mask):
print("incorrect dimensions")
return
img = np.array(img)
mask = np.array(mask)
if img.ndim == 2:
img = (mask>0)*img
elif img.ndim == 3 and img.shape[-1] > 3:
for n in img.shape[0]:
img[n] = (mask[n]>0)*img[n]
elif img.ndim == 3 and img.shape[-1] == 3:
img[:,:,0] = (mask>0)*img[:,:,0]
img[:,:,1] = (mask>0)*img[:,:,1]
img[:,:,2] = (mask>0)*img[:,:,2]
else:
for n in img.shape[0]:
img[n, :,:,0] = (mask[n]>0)*img[n, :,:,0]
img[n, :,:,1] = (mask[n]>0)*img[n, :,:,1]
img[n, :,:,2] = (mask[n]>0)*img[n, :,:,2]
return img
def loadTiff(ifile):
try:
with TiffFile(str(ifile)) as tfile:
vol = tfile.asarray()
return vol
except IOError as err:
print ("%s: Error -- Failed to open '%s'"%(sys.argv[0], str(ifile)))
sys.exit(0)
def regstat(img, mask):
""" compute mean vector and covariance matrix of the regions defined by mask"""
nzero = mask.nonzero()
return img[nzero].mean(axis=0), np.cov(img[nzero].T)
def getPlateBackgroundWS(img, sigma=2, level=0.15):
ws = phlib.watersheditk(img,sigma,level,False)
# label of the largest region, i.e. the plate background
bc = np.bincount(ws.flat)
lmax = bc.argmax()
return ws==lmax
def getLargest(mask):
bc = np.bincount(mask.flat)
lmax = bc.argmax()
return mask==lmax
#convert plates to gray and normalize them to common mean and sdev
def platesToGray(plates, masks):
gplates = np.zeros(plates.shape[:3], np.uint8)
means=[]
sdevs=[]
for p in range(plates.shape[0]):
#gplates[p] = cv2.cvtColor(plates[p], cv2.COLOR_RGB2GRAY)
gplates[p] = plates[p][...,0]
mean, cov = regstat(gplates[p],masks[p])
means.append(mean)
sdevs.append(np.sqrt(cov))
means=np.array(means)
ntarget = np.argmin(np.abs(means-np.median(means)))
for p in range(gplates.shape[0]):
gplates[p,...] = normalizeGray(gplates[p], means[p], sdevs[p], means[ntarget], sdevs[ntarget])
return gplates
#convert plates to gray and normalize them to common mean and sdev
def normalizeGrays(gplates, masks):
means=[]
sdevs=[]
for p in range(gplates.shape[0]):
mean, cov = regstat(gplates[p],masks[p])
means.append(mean)
sdevs.append(np.sqrt(cov))
means=np.array(means)
ntarget = np.argmin(np.abs(means-np.median(means)))
for p in range(gplates.shape[0]):
gplates[p,...] = normalizeGray(gplates[p], means[p], sdevs[p], means[ntarget], sdevs[ntarget])
return gplates
# normalize gray image with smean and scov to image with tmean and tcov
# https://www.pyimagesearch.com/2014/06/30/super-fast-color-transfer-images/
def normalizeGray(source, smean, scov, tmean, tcov):
target = source-smean
target *= tcov/scov
target += tmean
return target
def getLargest (mask):
labels, nlabels = measure.label(mask, return_num=True)
lsizes = np.bincount(labels.flat)
#get the largest region
maxlabel = 1+np.argmax(lsizes[1:])
return labels == maxlabel
def select_overlaps(mask, prevmask, plantnum=-1, platenum=-1):
''' select the region in mask with overlaps in prevmask'''
minsize = 400 # minimal blob area to not to be regarded as noise (minimal seed size)
labels, nlabels = measure.label(mask, return_num=True)
ovlaps = np.unique(labels*prevmask)[1:] # the first one is background
# if area of overlapping reagions is too small (overlapping with a noise blob),
# make prevmask larger to find the plant
# Example: apogwas2//021,22
sumovlaps=0
for lbl in ovlaps:
sumovlaps += (labels == lbl).sum()
# check in a loop
while sumovlaps < minsize:
#print(f"Plant {plantnum},{platenum} select_overlaps: dilation of prevmask")
prevmask = ndi.binary_dilation(prevmask, np.ones((7,1)))
prevmask = ndi.binary_dilation(prevmask, np.ones((1,7)))
ovlaps = np.unique(labels*prevmask)[1:] # the first one is background
sumovlaps=0
for lbl in ovlaps:
sumovlaps += (labels == lbl).sum()
#remove regions too small <minsize, a typical seed is > minsize
# Example: apogwas2//021,5
if len(ovlaps) > 1:
aux=[]
for reg in ovlaps:
regsize = (labels==reg).sum()
if regsize > minsize:
aux.append(reg)
#else:
#print(f"Plant {plantnum},{platenum} select_overlaps: removed blob, size {regsize}")
ovlaps=aux
#trace()
# select all overlapping regions
gmask = labels.copy()
gmask[:]=0
for lbl in ovlaps:
gmask += (labels == lbl)
# the problems occur for large platenums and height increase may be large for platenum == 1
# thus, check only id platenum > 1
if platenum > 1 and plantnum in (0, 12, 13, 23): # left side images
# if gmask height increases too much, we have the border problem. So fix it
gmaskheight = np.nonzero(gmask)[0].max() - np.nonzero(gmask)[0].min()
pmaskheight = np.nonzero(prevmask)[0].max() - np.nonzero(prevmask)[0].min()
#trace()
if gmaskheight > 2* pmaskheight:
if plantnum in (0, 12): # left side images
#print("Plant %2d,%d fix left plant"%(plantnum, platenum))
gmask = fix_left_plant(gmask, prevmask)
elif plantnum in (11, 23): # right side images
#print("Plant %2d,%d fix right plant"%(plantnum, platenum))
gmask = fix_right_plant(gmask, prevmask)
pass
#trace()
return gmask
def select_largest_overlap(mask, prevmask):
''' select region in mask with larges overlap in prevmask'''
labels, nlabels = measure.label(mask, return_num=True)
largest_overlap = getLargest(mask*prevmask)
plant_label = (largest_overlap*labels).max()
return labels == plant_label
# segment plate by thresholding based on background statistics
def segPlateStat(gplate, bgmask=None, thrsigma=4):
if gplate.ndim > 2: gplate=cv2.cvtColor(gplate, cv2.COLOR_RGB2GRAY)
gplate = phlib.gaussitk(gplate, 4)
if not bgmask.any(): bgmask = gplate >=0;
#estimate statistical parameters of the whole image
mean, cov = regstat(gplate,bgmask)
#estimate statistical parameters of what we think is background
mean, cov = regstat(gplate,bgmask*(gplate < mean + np.sqrt(cov)))
#return getLargest(bgmask *(gplate > mean + thrsigma*np.sqrt(cov)))
#trace()
return gplate > mean + thrsigma*np.sqrt(cov)
def drawHoughLines(gmask, lines):
cdst = cv2.cvtColor(200*gmask, cv2.COLOR_GRAY2BGR)
if lines is not None:
for i in range(0, len(lines)):
rho = lines[i][0][0]
theta = lines[i][0][1]
a = math.cos(theta)
b = math.sin(theta)
x0 = a * rho
y0 = b * rho
pt1 = (int(x0 + gmask.shape[0]*(-b)), int(y0 + gmask.shape[0]*(a)))
pt2 = (int(x0 - gmask.shape[0]*(-b)), int(y0 - gmask.shape[0]*(a)))
cv2.line(cdst, pt1, pt2, (0,200,0), 3, cv2.LINE_AA)
return cdst
# a leftmost image can touch something 'big' on the left, usually a vertical strip (or strips)
def fix_left_plant(gmask, prevmask):
# we assume that the incorrect mask touches top, botton or left border
if not (gmask[0].any() or gmask[-1].any() and gmask[:,0].any()):
return gmask
gmask = gmask.astype(np.uint8)
# detect vertical strips as lines to estimate their angle
lines = cv2.HoughLines(gmask, 1, np.pi / 180, int(gmask.shape[0]/2), None, 0, 0)
#cdst = drawHoughLines(gmask, lines)
# convert angles > pi/2 to negative
angles = [ll[0][1] if ll[0][1] < np.pi/2 else ll[0][1] - np.pi for ll in lines]
rotangle = 180*np.mean(angles)/np.pi
# analyze only in the vertivcal range of nonzero prevmask values
nz = np.nonzero(prevmask)
pmiy = nz[0].min()
pmay = nz[0].max()
# align strips vertically
gmask = ndi.rotate(gmask,rotangle,reshape=False)
# compute foreground pixels in vertical columns, the strips go top to bottom
gprof=gmask[pmiy:pmay,:].sum(axis=0)
gprof = gprof > 0.8*(pmay-pmiy)
cutpos = np.nonzero(gprof)[0].max() # the rightmost value, we hope this is where the plant touches it
gmask[:,:cutpos] = 0
# remove noise along the border
gmask = ndi.binary_opening(gmask, np.ones((1,5))).astype(np.uint8)
#rotate back
gmask = ndi.rotate(gmask,-rotangle,reshape=False)
return select_overlaps(gmask, prevmask)
# a rightmost image can touch something 'big' on the right, usually a vertical strip (or strips)
def fix_right_plant(gmask, prevmask):
# we assume that the incorrect mask touches top, botton or right border
if not (gmask[0].any() or gmask[-1].any() and gmask[:,0].any()):
return gmask
gmask = gmask.astype(np.uint8)
# detect vertical strips as lines to estimate their angle
lines = cv2.HoughLines(gmask, 1, np.pi / 180, int(gmask.shape[0]/2), None, 0, 0)
#cdst = drawHoughLines(gmask, lines)
# convert angles > pi/2 to negative
angles = [ll[0][1] if ll[0][1] < np.pi/2 else ll[0][1] - np.pi for ll in lines]
rotangle = 180*np.mean(angles)/np.pi
# analyze only in the vertivcal range of nonzero prevmask values
nz = np.nonzero(prevmask)
pmiy = nz[0].min()
pmay = nz[0].max()
# align strips vertically
gmask = ndi.rotate(gmask,rotangle,reshape=False)
# compute foreground pixels in vertical columns, the strips go top to bottom
gprof=gmask[pmiy:pmay,:].sum(axis=0)
gprof = gprof > 0.8*(pmay-pmiy)
cutpos = np.nonzero(gprof)[0].min() # the leftmost value, we hope this is where the plant touches it
gmask[:,cutpos:] = 0
# remove noise along the border
gmask = ndi.binary_opening(gmask, np.ones((1,5))).astype(np.uint8)
#rotate back
gmask = ndi.rotate(gmask,-rotangle,reshape=False)
return select_overlaps(gmask, prevmask)
# a rightmost image can touch something 'tall' on the right
def fix_border_plant(gmask, prevmask):
# we assume that the incorrect mask touches top, bottom or right border
if not (gmask[0].any() or gmask[-1].any() and gmask[:,-1].any()):
return gmask
omask = ndi.binary_opening(gmask, np.ones((25,1)))
omask = getLargest(omask)
#trace()
omask = select_overlaps(gmask-ndi.binary_dilation(omask, np.ones((2,2))), prevmask)
return omask
def linfit(x, data):
if len(x) == 2:
m = (data[1]-data[0])/(x[1]-x[0])
c = ((data[1]+data[0])-m*(x[1]+x[0]))/2
return x, data, m, c, 0
else:
A = np.vstack([x, np.ones(len(x))]).T
(m, c), res = np.linalg.lstsq(A, data, rcond=None)[:2]
return x, data, m, c, np.sqrt(res[0])
def linplot(pdata):
plt.clf()
#pdata; [[x, data, m, c], [...], ...)
for (x, data, m, c) in pdata:
_ = plt.plot(x, data, 'o', label='Original data', markersize=10)
_ = plt.plot(x, m*x + c, 'r', label='Fitted line')
plt.show()
def linplotarray(pdata):
plt.clf()
ymax = np.max([np.max(pd[1]) for pd in pdata])
plt.ylim(0, 1.1*ymax)
for (x, data, m, c) in pdata:
_ = plt.plot(x, data, 'o', label='Original data', markersize=10)
_ = plt.plot(x, m*x + c, 'r', label='Fitted line')
canvas = plt.gca().figure.canvas
canvas.draw()
data = np.frombuffer(canvas.tostring_rgb(), dtype=np.uint8)
image = data.reshape(canvas.get_width_height()[::-1] + (3,))
return image
def procplant(plant_name, mask_name):
masks = loadTiff(mask_name)
plates = loadTiff(plant_name)
#trace()
maskheight = [np.nonzero(m)[0].max() - np.nonzero(m)[0].min() if m.max() > 0 else 0 for m in masks]
border_tb = [m[0].any() or m[-1].any() for m in masks]
border_lr = [m[:,0].any() or m[:,-1].any() for m in masks]
return_state = plateplantseg.classifyGrowth(plates.shape[1], maskheight, border_tb, border_lr)
# create plant growth image
cmasks = np.concatenate(masks, axis=1)[::2,::2]
nz = np.nonzero(cmasks)
cmin = max(0, nz[0].min()-5)
cmax = min(cmasks.shape[0], nz[0].max()+5)
cmasks = cmasks[cmin:cmax,:]
cplant = np.concatenate(plates, axis=1)[::2,::2]
cplant = cplant[cmin:cmax,:]
oplant = phlib.img3overlay(cplant, cmasks)
return return_state+[oplant], maskheight
desc="Create report for individual accessions as defined by a csv/tsv file"
dirName = os.environ.get('APOGWAS_PATH')
tsvName="apogwas.csv"
dishId=None
accIds=[]
plantNum=None
subStart=0
rWidth = 120
rebuildAll=False
reportWriter=None
def usage(desc):
global dirName, accIds, rWidth
print(sys.argv[0]+":", desc)
print("Usage: ", sys.argv[0], "[switches]")
print("Switches:")
print("\t-h ............... this usage")
print("\t-d name .......... directory with plant datasets (%s)"%dirName)
print("\t-a id,id,......... list of accession ids, separated by a comma")
print("\t-r ............... rebuild all")
def parsecmd(desc):
global dirName, rebuildAll, accIds
try:
opts, Names = getopt.getopt(sys.argv[1:], "hrd:s:a:", ["help"])
except getopt.GetoptError as err:
# print help information and exit:
print(str(err)) # will print something like "option -a not recognized"
sys.exit()
for o, a in opts:
if o in ("-h", "--help"):
usage(desc)
sys.exit()
elif o in ("-d"):
dirName = a
elif o in ("-a"):
accIds = a.split(",")
elif o in ("-s"):
subStart = int(a)
elif o in ("-w"):
rWidth = int(a)
elif o in ("-r"):
rebuildAll=True
def main():
global dirName, accIds, rebuildAll, reportWriter
parsecmd(desc)
accessions = loadCsv(f"{dirName}/{tsvName}")
for accession in accessions:
accession="9990"
#check first, if all plates exist (important in testing)
if accIds and not accession in accIds: continue
plant_dirs = {}
for acs in accessions[accession]:
pdirectory = "%s/batch%s/%03d"%(dirName,acs[batch],int(acs[plate_id]))
if os.path.isdir(pdirectory):
plant_dirs[pdirectory] = acs
pass
# if we have collected 8 dishes, write the report
if plant_dirs and len(plant_dirs) == 8:
print(f"Processing accession {accession}")
controls=[]
apos=[]
for ppd in plant_dirs:
pd = plant_dirs[ppd]
pos = 3*(4*(int(pd[row])-1) + int(pd[column]) -1)
for n in range(3):
mask_name = glob.glob("%s/batch%s/%03d/pmask-*-%02d_*.tif"%(dirName,pd[batch],int(pd[plate_id]), pos+n))[0]
plant_name =glob.glob("%s/batch%s/%03d/plant-*-%02d_*.tif"%(dirName,pd[batch],int(pd[plate_id]), pos+n))[0]
rslt, maskheight = procplant(plant_name, mask_name)
if pd[type] == "control":
controls.append([["batch%s"%pd[batch], "%03d/%d"%(int(pd[plate_id]),pos+n)]+rslt, maskheight])
else:
apos.append([["batch%s"%pd[batch], "%03d/%d"%(int(pd[plate_id]),pos+n)]+rslt, maskheight])
pass
#reportWriter.writerow(retval)
reportWriter = plateplantseg.ODSWriter()
hdr1=["Batch","Plate Id","Type","Seed height", "Day 1 height", "Growth rate","Accel. factor", "From day", "Residuals", "Valid time steps" ]
hdr2=["Growth plot","Plant growth, Days 0 – 10"]
# print report for controls
reportWriter.addtable("control", hdr1+hdr2)
ok_data=[]
pnames=[]
csvRows=[]
for rr in controls:
reportWriter.writerow(rr[0])
if not "error" in rr[0][2]:
ok_data.append(rr[1])
pnames.append("%s/%s"%(rr[0][0],rr[0][1]))
csvRows.append(["control", accession] + rr[0][:-2] + rr[1])
oo=np.array(ok_data).T
omean=oo.mean(axis=1)
osdev=np.sqrt(oo.var(axis=1))
ot = np.hstack((oo,omean.reshape(omean.shape[0],1),osdev.reshape(omean.shape[0],1)))
hdr_data=["Day"]+[p for p in pnames] + ["Mean", "SDev",".""."]
reportWriter.addtable("control-data", hdr_data)
for n, rr in enumerate(ot):
reportWriter.writerow([n]+[r for r in rr])
# print report for apos
reportWriter.addtable("apo", hdr1+hdr2)
ok_data=[]
pnames=[]
for rr in apos:
reportWriter.writerow(rr[0])
if not "error" in rr[0][2]:
ok_data.append(rr[1])
pnames.append("%s/%s"%(rr[0][0],rr[0][1]))
csvRows.append(["apo", accession] + rr[0][:-2] + rr[1])
oo=np.array(ok_data).T
omean=oo.mean(axis=1)
osdev=np.sqrt(oo.var(axis=1))
ot = np.hstack((oo,omean.reshape(omean.shape[0],1),osdev.reshape(omean.shape[0],1)))
hdr_data=["Day"]+[p for p in pnames] + ["Mean", "SDev",".""."]
reportWriter.addtable("apo-data", hdr_data)
for n, rr in enumerate(ot):
reportWriter.writerow([n]+[r for r in rr])
reportWriter.save("%s/acc-report-%s.ods"%(dirName,accession))
with open("%s/acc-report-%s-csv.csv"%(dirName,accession), "w") as cf:
csvWriter = csv.writer(cf, delimiter='\t', quotechar='"', quoting=csv.QUOTE_MINIMAL)
csvWriter.writerow(["Control/apo", "Accession"]+hdr1+["Height day %d"%d for d in range(11)])
for csvRow in csvRows:
rounded = ["%.2f"%v if isinstance(v, float) else v for v in csvRow]
csvWriter.writerow(rounded)
#trace()
pass
pass
if __name__ == "__main__":
main()