-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathprepare_displacement_matrices.m
54 lines (45 loc) · 1.42 KB
/
prepare_displacement_matrices.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
function [A, b] = prepare_displacement_matrices(A1, b1, A2, b2, displacement)
% [A, b] = PREPARE_DISPLACEMENT_MATRICES(A1, b1, A2, b2, displacement)
%
% Compute matrices used for displacement estimation as defined by equations
% (7.32) and (7.33) in Gunnar Farnebäck's thesis "Polynomial Expansion for
% Orientation and Motion Estimation".
%
% Author: Gunnar Farnebäck
% Computer Vision Laboratory
% Linköping University, Sweden
% The code below has been replaced by a mex function with exactly the same
% functionality. Since this implementation is so much slower we give an
% error if the mex-file is missing.
error('PREPARE_DISPLACEMENT_MATRICES is implemented as a mex-file. It has not been compiled on this platform.')
sides = size(A1);
sides = sides(1:2);
if nargin < 5
displacement = zeros([sides 2]);
end
A = zeros(size(A1));
b = zeros(size(b1));
% If displacement is zero, we will get A = (A1+A2)/2 and b = -(b2-b1)/2.
for j = 1:sides(2)
for i = 1:sides(1)
di = displacement(i,j,1);
if i + di < 1
di = 1-i;
end
if i + di > sides(1)
di = sides(1) - i;
end
dj = displacement(i,j,2);
if j + dj < 1
dj = 1-j;
end
if j + dj > sides(2)
dj = sides(2) - j;
end
A(i,j,:,:) = (A1(i,j,:,:) + A2(i+di,j+dj,:,:)) / 2;
AA = squeeze(A(i,j,:,:));
bb2 = squeeze(b2(i+di,j+dj,:)) - 2 * AA * [di;dj];
b(i,j,:) = -(shiftdim(bb2,-2) - b1(i,j,:)) / 2;
end
end