From 12a568b45f49fe5ce1d5aa90bf883651b49cd886 Mon Sep 17 00:00:00 2001 From: jstoobysmith <72603918+jstoobysmith@users.noreply.github.com> Date: Fri, 19 Apr 2024 10:08:56 -0400 Subject: [PATCH] refactor: Lint --- HepLean.lean | 3 +++ HepLean/AnomalyCancellation/LinearMaps.lean | 3 ++- .../SMNu/Ordinary/DimSevenPlane.lean | 25 ++++++++++++------- .../SMNu/PlusU1/BoundPlaneDim.lean | 10 +++++++- .../SMNu/PlusU1/PlaneNonSols.lean | 16 ++++++++++-- 5 files changed, 44 insertions(+), 13 deletions(-) diff --git a/HepLean.lean b/HepLean.lean index 9b65669c..5e92471c 100644 --- a/HepLean.lean +++ b/HepLean.lean @@ -36,11 +36,14 @@ import HepLean.AnomalyCancellation.SMNu.Basic import HepLean.AnomalyCancellation.SMNu.FamilyMaps import HepLean.AnomalyCancellation.SMNu.NoGrav.Basic import HepLean.AnomalyCancellation.SMNu.Ordinary.Basic +import HepLean.AnomalyCancellation.SMNu.Ordinary.DimSevenPlane import HepLean.AnomalyCancellation.SMNu.Ordinary.FamilyMaps import HepLean.AnomalyCancellation.SMNu.Permutations import HepLean.AnomalyCancellation.SMNu.PlusU1.BMinusL import HepLean.AnomalyCancellation.SMNu.PlusU1.Basic +import HepLean.AnomalyCancellation.SMNu.PlusU1.BoundPlaneDim import HepLean.AnomalyCancellation.SMNu.PlusU1.FamilyMaps import HepLean.AnomalyCancellation.SMNu.PlusU1.HyperCharge +import HepLean.AnomalyCancellation.SMNu.PlusU1.PlaneNonSols import HepLean.AnomalyCancellation.SMNu.PlusU1.QuadSol import HepLean.AnomalyCancellation.SMNu.PlusU1.QuadSolToSol diff --git a/HepLean/AnomalyCancellation/LinearMaps.lean b/HepLean/AnomalyCancellation/LinearMaps.lean index 13712cce..2147ac26 100644 --- a/HepLean/AnomalyCancellation/LinearMaps.lean +++ b/HepLean/AnomalyCancellation/LinearMaps.lean @@ -149,7 +149,7 @@ lemma map_add₂ (f : BiLinearSymm V) (S : V) (T1 T2 : V) : f (S, T1 + T2) = f (S, T1) + f (S, T2) := by rw [f.swap, f.map_add₁, f.swap T1 S, f.swap T2 S] - +/-- Fixing the second input vectors, the resulting linear map. -/ def toLinear₁ (f : BiLinearSymm V) (T : V) : V →ₗ[ℚ] ℚ where toFun S := f (S, T) map_add' S1 S2 := by @@ -301,6 +301,7 @@ lemma map_add₃ (f : TriLinearSymm V) (S T L1 L2 : V) : f (S, T, L1 + L2) = f (S, T, L1) + f (S, T, L2) := by rw [f.swap₃, f.map_add₁, f.swap₃, f.swap₃ L2 T S] +/-- Fixing the second and third input vectors, the resulting linear map. -/ def toLinear₁ (f : TriLinearSymm V) (T L : V) : V →ₗ[ℚ] ℚ where toFun S := f (S, T, L) map_add' S1 S2 := by diff --git a/HepLean/AnomalyCancellation/SMNu/Ordinary/DimSevenPlane.lean b/HepLean/AnomalyCancellation/SMNu/Ordinary/DimSevenPlane.lean index 08d14abc..d2806a7b 100644 --- a/HepLean/AnomalyCancellation/SMNu/Ordinary/DimSevenPlane.lean +++ b/HepLean/AnomalyCancellation/SMNu/Ordinary/DimSevenPlane.lean @@ -23,7 +23,7 @@ open BigOperators namespace PlaneSeven - +/-- A charge assignment forming one of the basis elements of the plane. -/ def B₀ : (SM 3).charges := toSpeciesEquiv.invFun ( fun s => fun i => match s, i with | 0, 0 => 1 @@ -36,6 +36,7 @@ lemma B₀_cubic (S T : (SM 3).charges) : cubeTriLin (B₀, S, T) = simp [Fin.sum_univ_three, B₀, Fin.divNat, Fin.modNat, finProdFinEquiv] ring +/-- A charge assignment forming one of the basis elements of the plane. -/ def B₁ : (SM 3).charges := toSpeciesEquiv.invFun ( fun s => fun i => match s, i with | 1, 0 => 1 @@ -48,6 +49,7 @@ lemma B₁_cubic (S T : (SM 3).charges) : cubeTriLin (B₁, S, T) = simp [Fin.sum_univ_three, B₁, Fin.divNat, Fin.modNat, finProdFinEquiv] ring +/-- A charge assignment forming one of the basis elements of the plane. -/ def B₂ : (SM 3).charges := toSpeciesEquiv.invFun ( fun s => fun i => match s, i with | 2, 0 => 1 @@ -60,6 +62,7 @@ lemma B₂_cubic (S T : (SM 3).charges) : cubeTriLin (B₂, S, T) = simp [Fin.sum_univ_three, B₂, Fin.divNat, Fin.modNat, finProdFinEquiv] ring +/-- A charge assignment forming one of the basis elements of the plane. -/ def B₃ : (SM 3).charges := toSpeciesEquiv.invFun ( fun s => fun i => match s, i with | 3, 0 => 1 @@ -73,6 +76,7 @@ lemma B₃_cubic (S T : (SM 3).charges) : cubeTriLin (B₃, S, T) = ring_nf rfl +/-- A charge assignment forming one of the basis elements of the plane. -/ def B₄ : (SM 3).charges := toSpeciesEquiv.invFun ( fun s => fun i => match s, i with | 4, 0 => 1 @@ -86,6 +90,7 @@ lemma B₄_cubic (S T : (SM 3).charges) : cubeTriLin (B₄, S, T) = ring_nf rfl +/-- A charge assignment forming one of the basis elements of the plane. -/ def B₅ : (SM 3).charges := toSpeciesEquiv.invFun ( fun s => fun i => match s, i with | 5, 0 => 1 @@ -99,6 +104,7 @@ lemma B₅_cubic (S T : (SM 3).charges) : cubeTriLin (B₅, S, T) = ring_nf rfl +/-- A charge assignment forming one of the basis elements of the plane. -/ def B₆ : (SM 3).charges := toSpeciesEquiv.invFun ( fun s => fun i => match s, i with | 1, 2 => 1 @@ -111,6 +117,7 @@ lemma B₆_cubic (S T : (SM 3).charges) : cubeTriLin (B₆, S, T) = simp [Fin.sum_univ_three, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv] ring_nf +/-- The charge assignments forming a basis of the plane. -/ @[simp] def B : Fin 7 → (SM 3).charges := fun i => match i with @@ -191,49 +198,49 @@ lemma Bi_Bj_ne_cubic {i j : Fin 7} (h : i ≠ j) (S : (SM 3).charges) : exact B₆_Bi_cubic h S lemma B₀_B₀_Bi_cubic {i : Fin 7} : - cubeTriLin (B 0, B 0, B i) = 0 := by + cubeTriLin (B 0, B 0, B i) = 0 := by change cubeTriLin (B₀, B₀, B i) = 0 rw [B₀_cubic] fin_cases i <;> simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv] lemma B₁_B₁_Bi_cubic {i : Fin 7} : - cubeTriLin (B 1, B 1, B i) = 0 := by + cubeTriLin (B 1, B 1, B i) = 0 := by change cubeTriLin (B₁, B₁, B i) = 0 rw [B₁_cubic] fin_cases i <;> simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv] lemma B₂_B₂_Bi_cubic {i : Fin 7} : - cubeTriLin (B 2, B 2, B i) = 0 := by + cubeTriLin (B 2, B 2, B i) = 0 := by change cubeTriLin (B₂, B₂, B i) = 0 rw [B₂_cubic] fin_cases i <;> simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv] lemma B₃_B₃_Bi_cubic {i : Fin 7} : - cubeTriLin (B 3, B 3, B i) = 0 := by + cubeTriLin (B 3, B 3, B i) = 0 := by change cubeTriLin (B₃, B₃, B i) = 0 rw [B₃_cubic] fin_cases i <;> simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv] lemma B₄_B₄_Bi_cubic {i : Fin 7} : - cubeTriLin (B 4, B 4, B i) = 0 := by + cubeTriLin (B 4, B 4, B i) = 0 := by change cubeTriLin (B₄, B₄, B i) = 0 rw [B₄_cubic] fin_cases i <;> simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv] lemma B₅_B₅_Bi_cubic {i : Fin 7} : - cubeTriLin (B 5, B 5, B i) = 0 := by + cubeTriLin (B 5, B 5, B i) = 0 := by change cubeTriLin (B₅, B₅, B i) = 0 rw [B₅_cubic] fin_cases i <;> simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv] lemma B₆_B₆_Bi_cubic {i : Fin 7} : - cubeTriLin (B 6, B 6, B i) = 0 := by + cubeTriLin (B 6, B 6, B i) = 0 := by change cubeTriLin (B₆, B₆, B i) = 0 rw [B₆_cubic] fin_cases i <;> @@ -241,7 +248,7 @@ lemma B₆_B₆_Bi_cubic {i : Fin 7} : lemma Bi_Bi_Bj_cubic (i j : Fin 7) : - cubeTriLin (B i, B i, B j) = 0 := by + cubeTriLin (B i, B i, B j) = 0 := by fin_cases i exact B₀_B₀_Bi_cubic exact B₁_B₁_Bi_cubic diff --git a/HepLean/AnomalyCancellation/SMNu/PlusU1/BoundPlaneDim.lean b/HepLean/AnomalyCancellation/SMNu/PlusU1/BoundPlaneDim.lean index b2701f83..a116fa51 100644 --- a/HepLean/AnomalyCancellation/SMNu/PlusU1/BoundPlaneDim.lean +++ b/HepLean/AnomalyCancellation/SMNu/PlusU1/BoundPlaneDim.lean @@ -6,7 +6,13 @@ Authors: Joseph Tooby-Smith import HepLean.AnomalyCancellation.SMNu.PlusU1.Basic import HepLean.AnomalyCancellation.SMNu.PlusU1.FamilyMaps import HepLean.AnomalyCancellation.SMNu.PlusU1.PlaneNonSols +/-! +# Bound on plane dimension +We place an upper bound on the dimension of a plane of charges on which every point is a solution. +The upper bound is 7, proven in the theorem `plane_exists_dim_le_7`. + +-/ universe v u namespace SMRHN @@ -16,6 +22,8 @@ open SMνCharges open SMνACCs open BigOperators +/-- A proposition which is true if for a given `n` a plane of charges of dimension `n` exists +in which each point is a solution. -/ def existsPlane (n : ℕ) : Prop := ∃ (B : Fin n → (PlusU1 3).charges), LinearIndependent ℚ B ∧ ∀ (f : Fin n → ℚ), (PlusU1 3).isSolution (∑ i, f i • B i) @@ -33,7 +41,7 @@ lemma exists_plane_exists_basis {n : ℕ} (hE : existsPlane n) : have h1 : ∑ x : Fin n, -(g (Sum.inr x) • Y (Sum.inr x)) = ∑ x : Fin n, (-g (Sum.inr x)) • Y (Sum.inr x):= by apply Finset.sum_congr - simp + simp only intro i _ simp rw [h1] at hg diff --git a/HepLean/AnomalyCancellation/SMNu/PlusU1/PlaneNonSols.lean b/HepLean/AnomalyCancellation/SMNu/PlusU1/PlaneNonSols.lean index 9252076c..98e74a09 100644 --- a/HepLean/AnomalyCancellation/SMNu/PlusU1/PlaneNonSols.lean +++ b/HepLean/AnomalyCancellation/SMNu/PlusU1/PlaneNonSols.lean @@ -26,28 +26,40 @@ open BigOperators namespace ElevenPlane +/-- A charge assignment forming one of the basis elements of the plane. -/ def B₀ : (PlusU1 3).charges := ![1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +/-- A charge assignment forming one of the basis elements of the plane. -/ def B₁ : (PlusU1 3).charges := ![0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +/-- A charge assignment forming one of the basis elements of the plane. -/ def B₂ : (PlusU1 3).charges := ![0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +/-- A charge assignment forming one of the basis elements of the plane. -/ def B₃ : (PlusU1 3).charges := ![0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +/-- A charge assignment forming one of the basis elements of the plane. -/ def B₄ : (PlusU1 3).charges := ![0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +/-- A charge assignment forming one of the basis elements of the plane. -/ def B₅ : (PlusU1 3).charges := ![0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +/-- A charge assignment forming one of the basis elements of the plane. -/ def B₆ : (PlusU1 3).charges := ![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] +/-- A charge assignment forming one of the basis elements of the plane. -/ def B₇ : (PlusU1 3).charges := ![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] +/-- A charge assignment forming one of the basis elements of the plane. -/ def B₈ : (PlusU1 3).charges := ![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0] +/-- A charge assignment forming one of the basis elements of the plane. -/ def B₉ : (PlusU1 3).charges := ![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0] +/-- A charge assignment forming one of the basis elements of the plane. -/ def B₁₀ : (PlusU1 3).charges := ![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] +/-- The charge assignment forming a basis of the plane. -/ def B : Fin 11 → (PlusU1 3).charges := fun i => match i with | 0 => B₀ @@ -76,7 +88,7 @@ lemma Bi_sum_quad (i : Fin 11) (f : Fin 11 → ℚ) : rw [quadBiLin.map_smul₂, Bi_Bj_quad hij.symm] simp - +/-- The coefficents of the quadratic equation in our basis. -/ @[simp] def quadCoeff : Fin 11 → ℚ := ![1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0] @@ -102,7 +114,7 @@ lemma isSolution_quadCoeff_f_sq_zero (f : Fin 11 → ℚ) (hS : (PlusU1 3).isSol rw [Fintype.sum_eq_zero_iff_of_nonneg] at hQ exact congrFun hQ k intro i - simp + simp only [Pi.zero_apply, quadCoeff] rw [mul_nonneg_iff] apply Or.inl apply And.intro