diff --git a/HepLean/AnomalyCancellation/Basic.lean b/HepLean/AnomalyCancellation/Basic.lean index 382bcb73..651118c2 100644 --- a/HepLean/AnomalyCancellation/Basic.lean +++ b/HepLean/AnomalyCancellation/Basic.lean @@ -77,7 +77,7 @@ namespace ACCSystemLinear structure LinSols (χ : ACCSystemLinear) where /-- The underlying charge. -/ val : χ.1.charges - /-- The condition that the charge satifies the linear ACCs. -/ + /-- The condition that the charge satisfies the linear ACCs. -/ linearSol : ∀ i : Fin χ.numberLinear, χ.linearACCs i val = 0 /-- Two solutions are equal if the underlying charges are equal. -/ @@ -172,7 +172,7 @@ namespace ACCSystemQuad /-- The type of solutions to the linear and quadratic ACCs. -/ structure QuadSols (χ : ACCSystemQuad) extends χ.LinSols where - /-- The condition that the charge satifies the quadratic ACCs. -/ + /-- The condition that the charge satisfies the quadratic ACCs. -/ quadSol : ∀ i : Fin χ.numberQuadratic, (χ.quadraticACCs i) val = 0 /-- Two `QuadSols` are equal if the underlying charges are equal. -/ @@ -225,7 +225,7 @@ namespace ACCSystem /-- The type of solutions to the anomaly cancellation conditions. -/ structure Sols (χ : ACCSystem) extends χ.QuadSols where - /-- The condition that the charge satifies the cubic ACC. -/ + /-- The condition that the charge satisfies the cubic ACC. -/ cubicSol : χ.cubicACC val = 0 /-- Two solutions are equal if the underlying charges are equal. -/ diff --git a/HepLean/AnomalyCancellation/MSSMNu/Basic.lean b/HepLean/AnomalyCancellation/MSSMNu/Basic.lean index 839e1d9e..1b8ce7ce 100644 --- a/HepLean/AnomalyCancellation/MSSMNu/Basic.lean +++ b/HepLean/AnomalyCancellation/MSSMNu/Basic.lean @@ -206,7 +206,7 @@ lemma accSU2_ext {S T : MSSMCharges.charges} rw [hd, hu] rfl -/-- The anomaly cancelation condition for SU(3) anomaly. -/ +/-- The anomaly cancellation condition for SU(3) anomaly. -/ @[simp] def accSU3 : MSSMCharges.charges →ₗ[ℚ] ℚ where toFun S := ∑ i, (2 * (Q S i) + (U S i) + (D S i)) diff --git a/HepLean/AnomalyCancellation/MSSMNu/HyperCharge.lean b/HepLean/AnomalyCancellation/MSSMNu/HyperCharge.lean index 8af33deb..23268af1 100644 --- a/HepLean/AnomalyCancellation/MSSMNu/HyperCharge.lean +++ b/HepLean/AnomalyCancellation/MSSMNu/HyperCharge.lean @@ -8,7 +8,7 @@ import Mathlib.Tactic.Polyrith /-! # Hypercharge in MSSM. -Relavent definitions for the MSSM hypercharge. +Relevant definitions for the MSSM hypercharge. -/ diff --git a/HepLean/AnomalyCancellation/PureU1/Even/LineInCubic.lean b/HepLean/AnomalyCancellation/PureU1/Even/LineInCubic.lean index 834dc5b0..db47ec05 100644 --- a/HepLean/AnomalyCancellation/PureU1/Even/LineInCubic.lean +++ b/HepLean/AnomalyCancellation/PureU1/Even/LineInCubic.lean @@ -67,7 +67,7 @@ lemma line_in_cubic_P_P_P! {S : (PureU1 (2 * n.succ)).LinSols} (h : lineInCubic linear_combination 2 / 3 * (lineInCubic_expand h g f hS 1 1) - (lineInCubic_expand h g f hS 1 2) / 6 -/-- We say a `LinSol` satifies `lineInCubicPerm` if all its permutations satsify `lineInCubic`. -/ +/-- We say a `LinSol` satisfies `lineInCubicPerm` if all its permutations satisfy `lineInCubic`. -/ def lineInCubicPerm (S : (PureU1 (2 * n.succ)).LinSols) : Prop := ∀ (M : (FamilyPermutations (2 * n.succ)).group ), lineInCubic ((FamilyPermutations (2 * n.succ)).linSolRep M S) diff --git a/HepLean/AnomalyCancellation/PureU1/LineInPlaneCond.lean b/HepLean/AnomalyCancellation/PureU1/LineInPlaneCond.lean index 3d878778..8ea80f4f 100644 --- a/HepLean/AnomalyCancellation/PureU1/LineInPlaneCond.lean +++ b/HepLean/AnomalyCancellation/PureU1/LineInPlaneCond.lean @@ -12,7 +12,7 @@ import Mathlib.RepresentationTheory.Basic /-! # Line in plane condition -We say a `LinSol` satifies the `line in plane` condition if for all distinct `i1`, `i2`, `i3` in +We say a `LinSol` satisfies the `line in plane` condition if for all distinct `i1`, `i2`, `i3` in `Fin n`, we have `S i1 = S i2` or `S i1 = - S i2` or `2 S i3 + S i1 + S i2 = 0`. @@ -21,7 +21,7 @@ The main reference for this material is - https://arxiv.org/pdf/1912.04804.pdf -We will show that `n ≥ 4` the `line in plane` condition on solutions inplies the +We will show that `n ≥ 4` the `line in plane` condition on solutions implies the `constAbs` condition. -/ diff --git a/HepLean/AnomalyCancellation/PureU1/Odd/BasisLinear.lean b/HepLean/AnomalyCancellation/PureU1/Odd/BasisLinear.lean index ef0361d2..30c7570d 100644 --- a/HepLean/AnomalyCancellation/PureU1/Odd/BasisLinear.lean +++ b/HepLean/AnomalyCancellation/PureU1/Odd/BasisLinear.lean @@ -10,7 +10,7 @@ import Mathlib.Logic.Equiv.Fin /-! # Basis of `LinSols` in the odd case -We give a basis of `LinSols` in the odd case. This basis has the special propoerty +We give a basis of `LinSols` in the odd case. This basis has the special property that splits into two planes on which every point is a solution to the ACCs. -/ universe v u diff --git a/HepLean/AnomalyCancellation/PureU1/Odd/LineInCubic.lean b/HepLean/AnomalyCancellation/PureU1/Odd/LineInCubic.lean index d7a90005..d5153b5a 100644 --- a/HepLean/AnomalyCancellation/PureU1/Odd/LineInCubic.lean +++ b/HepLean/AnomalyCancellation/PureU1/Odd/LineInCubic.lean @@ -16,10 +16,10 @@ import Mathlib.RepresentationTheory.Basic # Line In Cubic Odd case We say that a linear solution satisfies the `lineInCubic` property -if the line through that point and through the two different planes formed by the baisis of +if the line through that point and through the two different planes formed by the basis of `LinSols` lies in the cubic. -We show that for a solution all its permutations satsfiy this property, +We show that for a solution all its permutations satisfy this property, then the charge must be zero. The main reference for this file is: @@ -34,7 +34,7 @@ open BigOperators variable {n : ℕ} open VectorLikeOddPlane -/-- A property on `LinSols`, statified if every point on the line between the two planes +/-- A property on `LinSols`, satisfied if every point on the line between the two planes in the basis through that point is in the cubic. -/ def lineInCubic (S : (PureU1 (2 * n + 1)).LinSols) : Prop := ∀ (g f : Fin n → ℚ) (_ : S.val = Pa g f) (a b : ℚ) , @@ -64,7 +64,7 @@ lemma line_in_cubic_P_P_P! {S : (PureU1 (2 * n + 1)).LinSols} (h : lineInCubic S -/-- We say a `LinSol` satifies `lineInCubicPerm` if all its permutations satsify `lineInCubic`. -/ +/-- We say a `LinSol` satisfies `lineInCubicPerm` if all its permutations satisfy `lineInCubic`. -/ def lineInCubicPerm (S : (PureU1 (2 * n + 1)).LinSols) : Prop := ∀ (M : (FamilyPermutations (2 * n + 1)).group ), lineInCubic ((FamilyPermutations (2 * n + 1)).linSolRep M S) diff --git a/HepLean/AnomalyCancellation/SM/Basic.lean b/HepLean/AnomalyCancellation/SM/Basic.lean index cd712307..5f68cc64 100644 --- a/HepLean/AnomalyCancellation/SM/Basic.lean +++ b/HepLean/AnomalyCancellation/SM/Basic.lean @@ -13,7 +13,7 @@ import Mathlib.Logic.Equiv.Fin /-! # Anomaly cancellation conditions for n family SM. -We define the ACC system for the Standard Model with`n`-famlies and no RHN. +We define the ACC system for the Standard Model with`n`-families and no RHN. -/ @@ -21,7 +21,7 @@ universe v u open Nat open BigOperators -/-- Aassociate to each (including RHN) SM fermion a set of charges-/ +/-- Associate to each (including RHN) SM fermion a set of charges-/ @[simps!] def SMCharges (n : ℕ) : ACCSystemCharges := ACCSystemChargesMk (5 * n) diff --git a/HepLean/AnomalyCancellation/SM/FamilyMaps.lean b/HepLean/AnomalyCancellation/SM/FamilyMaps.lean index 2dc75d68..37c5bae0 100644 --- a/HepLean/AnomalyCancellation/SM/FamilyMaps.lean +++ b/HepLean/AnomalyCancellation/SM/FamilyMaps.lean @@ -7,7 +7,7 @@ import HepLean.AnomalyCancellation.SM.Basic /-! # Family maps for the Standard Model ACCs -We define the a series of maps between the charges for different numbers of famlies. +We define the a series of maps between the charges for different numbers of families. -/ @@ -84,7 +84,7 @@ other charges zero. -/ def familyEmbedding (m n : ℕ) : (SMCharges m).charges →ₗ[ℚ] (SMCharges n).charges := chargesMapOfSpeciesMap (speciesEmbed m n) -/-- For species, the embeddding of the `1`-family charges into the `n`-family charges in +/-- For species, the embedding of the `1`-family charges into the `n`-family charges in a universal manor. -/ @[simps!] def speciesFamilyUniversial (n : ℕ) : @@ -98,7 +98,7 @@ def speciesFamilyUniversial (n : ℕ) : simp [HSMul.hSMul] --rw [show Rat.cast a = a from rfl] -/-- The embeddding of the `1`-family charges into the `n`-family charges in +/-- The embedding of the `1`-family charges into the `n`-family charges in a universal manor. -/ def familyUniversal ( n : ℕ) : (SMCharges 1).charges →ₗ[ℚ] (SMCharges n).charges := chargesMapOfSpeciesMap (speciesFamilyUniversial n) diff --git a/HepLean/AnomalyCancellation/SM/NoGrav/One/Lemmas.lean b/HepLean/AnomalyCancellation/SM/NoGrav/One/Lemmas.lean index e24ce3a1..6288867a 100644 --- a/HepLean/AnomalyCancellation/SM/NoGrav/One/Lemmas.lean +++ b/HepLean/AnomalyCancellation/SM/NoGrav/One/Lemmas.lean @@ -12,7 +12,7 @@ import HepLean.AnomalyCancellation.SM.NoGrav.One.LinearParameterization The main result of this file is the conclusion of this paper: https://arxiv.org/abs/1907.00514 -That eveery solution to the ACCs without gravity satifies for free the gravitational anomaly. +That eveery solution to the ACCs without gravity satisfies for free the gravitational anomaly. -/ universe v u @@ -67,7 +67,7 @@ lemma accGrav_Q_neq_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) ≠ 0 rw [← hS'] exact S'.grav_of_cubic hC FLTThree -/-- Any solution to the ACCs without gravity satifies the gravitational ACC. -/ +/-- Any solution to the ACCs without gravity satisfies the gravitational ACC. -/ theorem accGravSatisfied {S : (SMNoGrav 1).Sols} (FLTThree : FermatLastTheoremWith ℚ 3) : accGrav S.val = 0 := by by_cases hQ : Q S.val (0 : Fin 1)= 0 diff --git a/HepLean/AnomalyCancellation/SMNu/FamilyMaps.lean b/HepLean/AnomalyCancellation/SMNu/FamilyMaps.lean index 8ffd5e85..1c11dcaa 100644 --- a/HepLean/AnomalyCancellation/SMNu/FamilyMaps.lean +++ b/HepLean/AnomalyCancellation/SMNu/FamilyMaps.lean @@ -7,7 +7,7 @@ import HepLean.AnomalyCancellation.SMNu.Basic /-! # Family maps for the Standard Model for RHN ACCs -We define the a series of maps between the charges for different numbers of famlies. +We define the a series of maps between the charges for different numbers of families. -/ @@ -89,7 +89,7 @@ other charges zero. -/ def familyEmbedding (m n : ℕ) : (SMνCharges m).charges →ₗ[ℚ] (SMνCharges n).charges := chargesMapOfSpeciesMap (speciesEmbed m n) -/-- For species, the embeddding of the `1`-family charges into the `n`-family charges in +/-- For species, the embedding of the `1`-family charges into the `n`-family charges in a universal manor. -/ @[simps!] def speciesFamilyUniversial (n : ℕ) : @@ -103,7 +103,7 @@ def speciesFamilyUniversial (n : ℕ) : simp [HSMul.hSMul] -- rw [show Rat.cast a = a from rfl] -/-- The embeddding of the `1`-family charges into the `n`-family charges in +/-- The embedding of the `1`-family charges into the `n`-family charges in a universal manor. -/ def familyUniversal (n : ℕ) : (SMνCharges 1).charges →ₗ[ℚ] (SMνCharges n).charges := chargesMapOfSpeciesMap (speciesFamilyUniversial n) diff --git a/HepLean/FlavorPhysics/CKMMatrix/Basic.lean b/HepLean/FlavorPhysics/CKMMatrix/Basic.lean index 36cba929..611612e9 100644 --- a/HepLean/FlavorPhysics/CKMMatrix/Basic.lean +++ b/HepLean/FlavorPhysics/CKMMatrix/Basic.lean @@ -9,7 +9,7 @@ import Mathlib.Tactic.Polyrith /-! # The CKM Matrix -The definition of the type of CKM matries as unitary $3×3$-matries. +The definition of the type of CKM matrices as unitary $3×3$-matrices. An equivalence relation on CKM matrices is defined, where two matrices are equivalent if they are related by phase shifts.