-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPLM_FT_main.py
350 lines (300 loc) · 14 KB
/
PLM_FT_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import logging
import os
import random
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
from datasets import load_dataset
from sklearn import metrics as skmetrics
# Before run: install ruamel_yaml==0.11.14, transformers==4.11.0, datasets; uninstall apex
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
import torch
from utils import ds_init_output_dir, init_logger, format_args
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
# check_min_version("4.11.0.dev0")
# require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
max_seq_length: Optional[int] = field(
default=48,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": "Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
},
)
dataset: str = field(
default=None
)
do_final_evaluations: Optional[bool] = field(
default=False, metadata={"help": "Whether do evaluations after training."}
)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
do_lower_case: Optional[bool] = field(
default=False,
metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
abs_samples: int = field(
default=4, metadata={"help": "Number of abstractions used in ConceptMax for training."}
)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this local_script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# init folder
ds_init_output_dir(training_args)
# Setup logging
log_level = logging.INFO
logger = init_logger(training_args, log_level)
logger.setLevel(log_level)
# Log on each process the small summary:
logger.info(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(format_args(training_args))
logger.info(format_args(data_args))
logger.info(format_args(model_args))
# Set seed before initializing model.
set_seed(training_args.seed)
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
# Downloading and loading xnli dataset from the hub.
data_files = {}
if training_args.do_train is not None:
data_files["train"] = os.path.join(data_args.dataset, "train.json")
if training_args.do_eval is not None:
data_files["validation"] = os.path.join(data_args.dataset, "valid.json")
if training_args.do_predict is not None:
data_files["test"] = os.path.join(data_args.dataset, "test.json")
extension = data_files["train"].split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
train_dataset, eval_dataset, predict_dataset = raw_datasets["train"], raw_datasets["validation"], raw_datasets["test"]
logger.info("Train: {}, Valid: {}, Test: {}".format(len(train_dataset), len(eval_dataset),
len(predict_dataset)))
# Labels
num_labels = 2
# Load pretrained model and tokenizer
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
cache_dir=model_args.cache_dir,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
do_lower_case=model_args.do_lower_case,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
)
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
config=config,
cache_dir=model_args.cache_dir
)
# Preprocessing the datasets
# Padding strategy
if data_args.pad_to_max_length:
padding = "max_length"
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
padding = False
# when loading fine-tuned models, this two lines doesn't change anything
tokenizer.add_tokens(["<c>", "</c>"])
model.resize_token_embeddings(len(tokenizer))
from collections import defaultdict
def preprocess_function(examples):
# Tokenize the texts
for i in range(len(examples['event'])):
examples['event'][i] = examples['event'][i].replace('<', '[').replace(">", "]")
examples['event'][i] = examples['event'][i].replace('[', '<c>').replace(']', '</c>')
return tokenizer(
examples["event"],
examples["concept"],
padding=padding,
max_length=data_args.max_seq_length,
truncation=True,
)
if training_args.do_train:
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
with training_args.main_process_first(desc="train dataset map pre-processing"):
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
load_from_cache_file=False,
desc="Running tokenizer on train dataset",
)
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
if training_args.do_eval:
if data_args.max_eval_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
with training_args.main_process_first(desc="validation dataset map pre-processing"):
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
load_from_cache_file=False,
desc="Running tokenizer on validation dataset",
)
if training_args.do_predict:
if data_args.max_predict_samples is not None:
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
predict_dataset = predict_dataset.map(
preprocess_function,
batched=True,
load_from_cache_file=False,
desc="Running tokenizer on prediction dataset",
)
# Get the metric function
metric_fns = [('accuracy', skmetrics.accuracy_score), ('auc', skmetrics.roc_auc_score),
('f1', skmetrics.f1_score), ('precision', skmetrics.precision_score),
('recall', skmetrics.recall_score), ('ma-f1', skmetrics.f1_score)]
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
probs = torch.softmax(torch.tensor(preds), dim=-1)[:, 1]
preds = np.argmax(preds, axis=1)
labels = p.label_ids
results = {}
for name, fn in metric_fns:
if name == 'auc':
results[name] = fn(labels, probs)
elif name == 'ma-f1':
results[name] = fn(labels, preds, average="macro")
else:
results[name] = fn(labels, preds)
results["sum"] = results["ma-f1"] + results["auc"]
return results # macro-f1 + auc
data_collator = DataCollatorWithPadding(tokenizer,
'max_length' if data_args.pad_to_max_length else 'longest',
pad_to_multiple_of=8)
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
compute_metrics=compute_metrics,
tokenizer=tokenizer,
data_collator=data_collator
)
# training
if training_args.do_train:
train_result = trainer.train()
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# evaluation
if training_args.do_eval:
logger.info("*** Validation ***")
eval_results = trainer.predict(test_dataset=eval_dataset, metric_key_prefix="valid")
metrics, label_ids, pred_prob = eval_results.metrics, eval_results.label_ids, eval_results.predictions
pred_prob = pred_prob[0] if isinstance(pred_prob, tuple) else pred_prob
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["valid_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("valid", metrics)
trainer.save_metrics("valid", metrics)
range_idx = np.arange(len(eval_dataset)).reshape(-1, 1)
pred_label = np.argmax(pred_prob, axis=-1).reshape(-1, 1)
pred_prob = np.concatenate([range_idx, pred_prob, label_ids.reshape(-1, 1), pred_label], axis=-1).round(3)
np.savetxt(os.path.join(training_args.output_dir, "valid_label.txt"), pred_prob, fmt='%.3f')
# Test
if training_args.do_predict:
logger.info("*** Test ***")
eval_results = trainer.predict(test_dataset=predict_dataset, metric_key_prefix="test")
metrics, label_ids, pred_prob = eval_results.metrics, eval_results.label_ids, eval_results.predictions
pred_prob = pred_prob[0] if isinstance(pred_prob, tuple) else pred_prob
max_test_samples = data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
metrics["test_samples"] = min(max_test_samples, len(predict_dataset))
trainer.log_metrics("test", metrics)
trainer.save_metrics("test", metrics)
range_idx = np.arange(len(predict_dataset)).reshape(-1, 1)
pred_label = np.argmax(pred_prob, axis=-1).reshape(-1, 1)
pred_prob = np.concatenate([range_idx, pred_prob, label_ids.reshape(-1, 1), pred_label], axis=-1)
np.savetxt(os.path.join(training_args.output_dir, "test_label.txt"), pred_prob, fmt='%.3f')
# write finish file
with open(os.path.join(training_args.output_dir, "checkpoint_finish"), "a") as fout:
fout.write("training Finished\n")
if __name__ == "__main__":
main()