-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy path200k_commu_mat_computation.py
476 lines (403 loc) · 19.8 KB
/
200k_commu_mat_computation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
#coding=utf8
'''
calculate the similarity by commuting matrix baesd on meta-structure
'''
from numba import jit
import time
import sys
import os
import cPickle as pickle
import numpy as np
import bottleneck as bn
from scipy.sparse import csr_matrix as csr
from utils import reverse_map, generate_adj_mat, save_triplets
from cal_commuting_mat import *
def get_topK_items(comm_res, ind2uid, ind2bid, topK=1000):
start = time.time()
U, _ = comm_res.shape
triplets = []
for i in xrange(U):
items = comm_res.getrow(i).toarray().flatten()
cols = np.argpartition(-items, topK).flatten()[:topK]#descending order
cols = [c for c in cols if items[c] > 0]#those less than 1000 non-zero entries, need to be removed zero ones
triplets.extend([(ind2uid[i], ind2bid[c], items[c]) for c in cols])
#logger.info('get topK items, total %s entries, cost %.2f seconds', len(triplets), time.time() - start)
print 'get top %s items, total %s entries, cost %.2f seconds' % (topK, len(triplets), time.time() - start)
return triplets
def batch_save_comm_res(path_str, wfilename, comm_res, ind2row, ind2col):
coo = comm_res.tocoo(copy=False)
step = 10000000
N = len(coo.row) / step
for i in range(N+1):
start_time = time.time()
triplets = []
start = i * step
end = start + step
rows = coo.row[start:end]
cols = coo.col[start:end]
vs = coo.data[start:end]
for r, c, v in zip(rows, cols, vs):
triplets.append((ind2row[r], ind2col[c], v))
save_triplets(wfilename, triplets, is_append=True)
print 'finish saving 10M %s triplets in %s, progress: %s/%s, cost %.2f seconds' % (path_str, wfilename, (i+1) * step, len(coo.data), time.time() - start_time)
def save_comm_res(path_str, filename, comm_res, ind2row, ind2col):
triplets = []
coo = comm_res.tocoo()
for r, c, v in zip(coo.row, coo.col,coo.data):
triplets.append((ind2row[r], ind2col[c], v))
save_triplets(filename, triplets)
def load_eids(eid_filename, type_):
lines = open(eid_filename, 'r').readlines()
eids = [int(l.strip()) for l in lines]
eid2ind = {v:k for k,v in enumerate(eids)}
ind2eid = reverse_map(eid2ind)
#logger.info('get %s %s from %s', len(eids), type_, eid_filename)
print 'get %s %s from %s' %(len(eids), type_, eid_filename)
return eids, eid2ind, ind2eid
def get_bo(path_str, bid2ind):
#U-pos-B-Cat-B
if 'State' in path_str:
sfilename = dir_ + 'bid_state.txt'
elif 'Cat' in path_str:
sfilename = dir_ + 'bid_cat.txt'
elif 'City' in path_str:
sfilename = dir_ + 'bid_city.txt'
elif 'Star' in path_str:
sfilename = dir_ + 'bid_stars.txt'
lines = open(sfilename, 'r').readlines()
parts = [l.strip().split() for l in lines]
bos = [(int(b), int(o)) for b,o in parts]
ond2ind = {v:k for k,v in enumerate(set([o for _, o in bos]))}
ind2ond = reverse_map(ond2ind)
adj_bo, adj_bo_t = generate_adj_mat(bos, bid2ind, ond2ind)
return adj_bo, adj_bo_t
def cal_comm_mat_UBB(path_str):
'''
200k ratings
calculate the commuting matrix in U-B-*-B style
in fact, only need to calculate BB
'''
uid_filename = dir_ + 'uids.txt'
print 'run cal_comm_mat_samples for 10k users in ', uid_filename
lines = open(uid_filename, 'r').readlines()
uids = [int(l.strip()) for l in lines]
uid2ind = {v:k for k,v in enumerate(uids)}
ind2uid = reverse_map(uid2ind)
bid_filename = dir_ + 'bids.txt'
lines = open(bid_filename, 'r').readlines()
bids = [int(l.strip()) for l in lines]
bid2ind = {v:k for k,v in enumerate(bids)}
ind2bid = reverse_map(bid2ind)
upb_filename = dir_ + 'uid_pos_bid.txt'
upb = np.loadtxt(upb_filename, dtype=int)
adj_ub, adj_ub_t = generate_adj_mat(upb, uid2ind, bid2ind)
adj_bo, adj_bo_t = get_bo(path_str, bid2ind)
t1 = time.time()
comm_res = cal_mat_ubb(path_str, adj_ub, adj_bo, adj_bo_t)
t2 = time.time()
print 'cal res of %s cost %2.f seconds' % (path_str, t2 - t1)
print 'comm_res shape=%s,densit=%s' % (comm_res.shape, comm_res.nnz * 1.0/comm_res.shape[0]/comm_res.shape[1])
K = 500
wfilename = dir_ + 'sim_res/path_count/%s_top%s.res' % (path_str, K)
triplets = get_topK_items(comm_res, ind2uid, ind2bid, topK=K)
save_triplets(wfilename, triplets)
#batch_save_comm_res(path_str, wfilename, comm_res, ind2uid, ind2bid)
t3 = time.time()
print 'save res of %s cost %2.f seconds' % (path_str, t3 - t2)
def cal_comm_mat_UUB(path_str, cikm=False):
'''
calculate commuting matrix for U-*-U-pos-B style
'''
uid_filename = dir_ + 'uids.txt'
bid_filename = dir_ + 'bids.txt'
upb_filename = dir_ + 'uid_pos_bid.txt'
if not cikm:
rid_filename = dir_ + 'rids.txt'
aid_filename = dir_ + 'aids.txt'
print 'cal commut mat for %s, filenames: %s, %s, %s' % (path_str, uid_filename, bid_filename, upb_filename)
uids, uid2ind, ind2uid = load_eids(uid_filename, 'user')
bids, bid2ind, ind2bid = load_eids(bid_filename, 'biz')
if not cikm:
rids, rid2ind, ind2rid = load_eids(rid_filename, 'review')
aids, aid2ind, ind2aid = load_eids(aid_filename, 'aspect')
upb = np.loadtxt(upb_filename, dtype=np.int64)
adj_upb, adj_upb_t = generate_adj_mat(upb, uid2ind, bid2ind)
if path_str == 'UPBUB':
start = time.time()
UBU = adj_upb.dot(adj_upb_t)
print 'UBU(%s), density=%.5f cost %.2f seconds' % (UBU.shape, UBU.nnz * 1.0/UBU.shape[0]/UBU.shape[1], time.time() - start)
elif path_str in ['UPBCatBUB', 'UPBCityBUB']:
start = time.time()
adj_bo, adj_bo_t = get_bo(path_str, bid2ind)
UBO = adj_upb.dot(adj_bo)
UBU = UBO.dot(UBO.transpose())
print 'UBU(%s), density=%.5f cost %.2f seconds' % (UBU.shape, UBU.nnz * 1.0/UBU.shape[0]/UBU.shape[1], time.time() - start)
elif path_str in ['UNBCatBUB', 'UNBCityBUB']:
unb_filename = dir_ + 'uid_neg_bid.txt'
unb = np.loadtxt(unb_filename, dtype=np.int64)
adj_unb, adj_unb_t = generate_adj_mat(unb, uid2ind, bid2ind)
start = time.time()
adj_bo, adj_bo_t = get_bo(path_str, bid2ind)
UBO = adj_unb.dot(adj_bo)
UBU = UBO.dot(UBO.transpose())
print 'UBU(%s), density=%.5f cost %.2f seconds' % (UBU.shape, UBU.nnz * 1.0/UBU.shape[0]/UBU.shape[1], time.time() - start)
elif path_str == 'UNBUB':
unb_filename = dir_ + 'uid_neg_bid.txt'
unb = np.loadtxt(unb_filename, dtype=np.int64)
adj_unb, adj_unb_t = generate_adj_mat(unb, uid2ind, bid2ind)
start = time.time()
UBU = adj_unb.dot(adj_unb_t)
print 'UBU(%s), density=%.5f cost %.2f seconds' % (UBU.shape, UBU.nnz * 1.0/UBU.shape[0]/UBU.shape[1], time.time() - start)
elif path_str == 'UUB':
social_filename = dir_ + 'user_social.txt'
uu = np.loadtxt(social_filename, dtype=np.int64)
adj_uu, adj_uu_t = generate_adj_mat(uu, uid2ind, uid2ind)
start = time.time()
UBU = adj_uu.copy()
print 'UBU(%s), density=%.5f cost %.2f seconds' % (UBU.shape, UBU.nnz * 1.0/UBU.shape[0]/UBU.shape[1], time.time() - start)
elif path_str == 'UCompUB':
uid_comp_filename = dir_ + 'uid_comp.txt'
uc = np.loadtxt(uid_comp_filename, dtype=np.int64)
cids = set(uc[:,1])
cid2ind = {v:k for k,v in enumerate(cids)}
ind2cnd = reverse_map(cid2ind)
adj_uc, adj_uc_t = generate_adj_mat(uc, uid2ind, cid2ind)
start = time.time()
UBU = adj_uc.dot(adj_uc_t)
print 'UBU(%s), density=%.5f cost %.2f seconds' % (UBU.shape, UBU.nnz * 1.0/UBU.shape[0]/UBU.shape[1], time.time() - start)
elif path_str == 'URPARUB':
urpa_filename = dir_ + 'uid_rid_pos_aid.txt'
urpa = np.loadtxt(urpa_filename)
ur = list(set([(u,r) for u, r in urpa[:,(0,1)]]))# u, r multiple aspects, thus u-r can be duplicate
adj_ur, adj_ur_t = generate_adj_mat(ur, uid2ind, rid2ind)
ra = urpa[:,(1,2)]
adj_ra, adj_ua_t = generate_adj_mat(ra, rid2ind, aid2ind)
start = time.time()
URA = adj_ur.dot(adj_ra)
UBU = URA.dot(URA.transpose())#it should be URARU, here we use UBU for convenience
print 'UBU(%s), density=%.5f cost %.2f seconds' % (UBU.shape, UBU.nnz * 1.0/UBU.shape[0]/UBU.shape[1], time.time() - start)
elif path_str == 'URNARUB':
urpa_filename = dir_ + 'uid_rid_neg_aid.txt'
urpa = np.loadtxt(urpa_filename)
ur = list(set([(u,r) for u, r in urpa[:,(0,1)]]))# u, r multiple aspects, thus u-r can be duplicate
adj_ur, adj_ur_t = generate_adj_mat(ur, uid2ind, rid2ind)
ra = urpa[:,(1,2)]
adj_ra, adj_ua_t = generate_adj_mat(ra, rid2ind, aid2ind)
start = time.time()
URA = adj_ur.dot(adj_ra)
UBU = URA.dot(URA.transpose())#it should be URARU, here we use UBU for convenience
print 'UBU(%s), density=%.5f cost %.2f seconds' % (UBU.shape, UBU.nnz * 1.0/UBU.shape[0]/UBU.shape[1], time.time() - start)
start = time.time()
UBUB = UBU.dot(adj_upb)
print 'UBUB(%s), density=%.5f cost %.2f seconds' % (UBUB.shape, UBUB.nnz * 1.0/UBUB.shape[0]/UBUB.shape[1], time.time() - start)
start = time.time()
K = 500
triplets = get_topK_items(UBUB, ind2uid, ind2bid, topK=K)
wfilename = dir_ + 'sim_res/path_count/%s_top%s.res' % (path_str, K)
save_triplets(wfilename, triplets)
#save_comm_res(path_str, wfilename, UBUB, ind2uid, ind2bid)
print 'finish saving %s %s entries in %s, cost %.2f seconds' % (len(triplets), path_str, wfilename, time.time() - start)
def cal_comm_mat_USUB(path_str):
'''
Given meta_structure_str, generate the commuting matrix
e.g. 'user-review-business,t10_aspect-review-user'
'''
uid_filename = dir_ + 'uids.txt'
bid_filename = dir_ + 'bids.txt'
aid_filename = dir_ + 'aids.txt'
rid_filename = dir_ + 'rids.txt'
upb_filename = dir_ + 'uid_pos_bid.txt'
print 'cal commut mat for %s, filenames: %s, %s, %s' % (path_str, uid_filename, bid_filename, upb_filename)
uids, uid2ind, ind2uid = load_eids(uid_filename, 'user')
bids, bid2ind, ind2bid = load_eids(bid_filename, 'biz')
aids, aid2ind, ind2aid = load_eids(aid_filename, 'aspect')
upb = np.loadtxt(upb_filename, dtype=np.int64)
adj_upb, adj_upb_t = generate_adj_mat(upb, uid2ind, bid2ind)
if 'P' in path_str:
urb_filename = dir_ + 'uid_rid_pos_bid.txt'
ura_filename = dir_ + 'uid_rid_pos_aid.txt'
ind2rid_filename = dir_ + 'sim_res/path_count/%s_spa_mat_id_map.pickle' % path_str
rar_mat_filename = dir_ + 'sim_res/path_count/%s_spa_mat.pickle' % path_str
elif 'N' in path_str:
urb_filename = dir_ + 'uid_rid_neg_bid.txt'
ura_filename = dir_ + 'uid_rid_neg_aid.txt'
ind2rid_filename = dir_ + 'sim_res/path_count/%s_spa_mat_id_map.pickle' % path_str
rar_mat_filename = dir_ + 'sim_res/path_count/%s_spa_mat.pickle' % path_str
f = open(ind2rid_filename, 'r')
ind2rid = pickle.load(f)
rid2ind = reverse_map(ind2rid)
urb = np.loadtxt(urb_filename, dtype=np.int64)
ura = np.loadtxt(ura_filename, dtype=np.int64)
ur = urb[:,(0,1)]
adj_ur, adj_ur_t = generate_adj_mat(ur, uid2ind, rid2ind)
rb = urb[:,(1,2)]
adj_rb, adj_rb_t = generate_adj_mat(rb, rid2ind, bid2ind)
ra = ura[:,(1,2)]
adj_ra, adj_ra_t = generate_adj_mat(ra, rid2ind, aid2ind)
start = time.time()
RBR = adj_rb.dot(adj_rb_t)
print 'RBR(%s), density=%.5f cost %.2f seconds' % (RBR.shape, RBR.nnz * 1.0/RBR.shape[0]/RBR.shape[1], time.time() - start)
start = time.time()
#RAR = adj_ra.dot(adj_ra_t)
f = open(rar_mat_filename, 'r')
RAR = pickle.load(f)
print 'load RAR(%s), density=%.5f cost %.2f seconds' % (RAR.shape, RAR.nnz * 1.0/RAR.shape[0]/RAR.shape[1], time.time() - start)
start = time.time()
RSR = RBR.multiply(RAR)
print 'RSR(%s), density=%.5f cost %.2f seconds' % (RSR.shape, RSR.nnz * 1.0/RSR.shape[0]/RSR.shape[1], time.time() - start)
start = time.time()
URSR = adj_ur.dot(RSR)
print 'URSR(%s), density=%.5f cost %.2f seconds' % (URSR.shape, URSR.nnz * 1.0/URSR.shape[0]/URSR.shape[1], time.time() - start)
start = time.time()
URSRU = URSR.dot(adj_ur_t)
print 'URSRU(%s), density=%.5f cost %.2f seconds' % (URSRU.shape, URSRU.nnz * 1.0/URSRU.shape[0]/URSRU.shape[1], time.time() - start)
start = time.time()
URSRUB = URSRU.dot(adj_upb)
print 'URSRUB(%s), density=%.5f cost %.2f seconds' % (URSRUB.shape, URSRUB.nnz * 1.0/URSRUB.shape[0]/URSRUB.shape[1], time.time() - start)
start = time.time()
K = 500
wfilename = dir_ + 'sim_res/path_count/%s_top%s.res' % (path_str, K)
#wfilename = dir_ + 'sim_res/path_count/%s.res' % path_str
batch_save_comm_res(path_str, wfilename, URSRUB, ind2uid, ind2bid)
print 'finish saving %s %s entries in %s, cost %.2f seconds' % (URSRUB.nnz, path_str, wfilename, time.time() - start)
def cal_rar(path_str):
aid_filename = dir_ + 'aids.txt'
rid_filename = dir_ + 'rids.txt'
aids = open(aid_filename, 'r').readlines()
aids = [int(r.strip()) for r in aids]
aid2ind = {a:ind for ind, a in enumerate(aids)}#global ind
ind2aid = reverse_map(aid2ind)
rids = open(rid_filename, 'r').readlines()
rids = [int(r.strip()) for r in rids]
rid2ind = {r:ind for ind, r in enumerate(rids)}#global ind
ind2rid = reverse_map(rid2ind)
if 'P' in path_str:
ura_filename = dir_ + 'uid_rid_pos_aid_weight.txt'
elif 'N' in path_str:
ura_filename = dir_ + 'uid_rid_neg_aid_weight.txt'
ura = np.loadtxt(ura_filename, dtype=np.float64)
ra = ura[:,(1,2,3)]
ra = [(int(r), int(a), w) for r, a, w in ra]
adj_ra, adj_ra_t = generate_adj_mat(ra, rid2ind, aid2ind, is_weight=True)
t1 = time.time()
RA = adj_ra.toarray()
t2 = time.time()
print 'to dense RA%s cost %.2f seconds' % (RA.shape, t2 - t1)
RAR_csr = cal_rar_block(RA, len(rid2ind), ind2rid, step=20000)
print 'finish cal rar by blocks, cost %.2f minutes' % ((time.time() - t2) / 60.0)
try:
wfilename = dir_ + 'sim_res/path_count/%s_spa_mat.pickle' % path_str
fw = open(wfilename, 'w+')
pickle.dump(RAR_csr, fw, pickle.HIGHEST_PROTOCOL)
map_filename = dir_ + 'sim_res/path_count/%s_spa_mat_id_map.pickle' % path_str
fw = open(map_filename, 'w+')
pickle.dump(ind2rid, fw, pickle.HIGHEST_PROTOCOL)
print 'finish saving sparse mat in ', wfilename
except Exception as e:
print e
DEBUG = False
def cal_rar_block(RA, nR, ind2rid, step=10000, topK=100):
if DEBUG:
RA = np.random.rand(1005,10)
ind2rid = {k:k for k in range(1005)}
nR = 1005
step, topK = 20, 10
debug_RR = np.dot(RA, RA.T)
col_inds = bn.argpartsort(-debug_RR, topK, axis=1)[:,:topK]
dr,dc = col_inds.shape
row_inds = np.tile(np.arange(dr).reshape(dr,1), dc)
debug_res = np.zeros((1005,1005))
debug_res[row_inds, col_inds] = 1
step_num = RA.shape[0] / step
data, rows, cols = [],[],[]
rar_start = time.time()
for i in range(step_num+1):
r = i * step
rblock = RA[r:r+step]
b_top100_res = []
b_top100_inds = []
tmp_res = {}
#finish 10000 users
block_start = time.time()
for j in range(step_num+1):
c = j * step
cblock = RA[c:c+step]
t3 = time.time()
dot_res = np.dot(rblock, cblock.T)# dot res: 10000 * 10000
drc = dot_res.shape[1]
tmp_topK = topK if topK < drc else drc
top100_inds = bn.argpartsort(-dot_res, tmp_topK, axis=1)[:,:tmp_topK]#10000 * 100,100 indices of the top K weights, column indices in dot_res
br, bc = top100_inds.shape
top100_rows = np.tile(np.arange(br).reshape(br,1), bc)#number of colums = colums of top100 inds, usually =100
top100_res = dot_res[top100_rows, top100_inds]#only need to preserve top 100 weights for global comparing
b_top100_res.append(top100_res)
b_top100_inds.append(top100_inds + c)#preserve the global indices, indices need to add the starting value of every block
block_end = time.time()
print 'finish calculating %s-th/%s block(%s*%s), cost %.2f seconds, rar_block cost %.2f minutes' % (i+1, step_num, step, step, block_end - block_start, (block_end - rar_start) / 60.0)
b_top100_inds = np.concatenate(b_top100_inds, axis=1)
b_top100_res = np.concatenate(b_top100_res, axis=1)
top100_inds = bn.argpartsort(-b_top100_res, topK, axis=1)[:,:topK]#10000 * 100,100 indices of the top K weights
tr, tc = top100_inds.shape
#it may exists that not all 100 weights are zero, prob is very small, processing later
top100_rows = np.tile(np.arange(tr).reshape(tr,1), tc)
#global row and col inds are needed for the constructing the sparse matrix for RAR
top100_res = b_top100_res[top100_rows, top100_inds]#10000 * 100, some may equal zero
b_col_top100_inds = b_top100_inds[top100_rows, top100_inds]#global column inds for top100, then we need to get global row inds
#the following code is used for gurantee all the weights > 0.0, remove 0 weights, very uncommon
trows, tcols = np.where(top100_res > 0.0)#return all the rows and cols of top100_res
global_col_inds = b_col_top100_inds[trows, tcols]#value corresponded to the trows + r
global_row_inds = trows + i * step
rows.extend(global_row_inds)
cols.extend(global_col_inds)
triplets = []
save_start = time.time()
print 'finish selecting top %s for block %s, cost %.2f seconds, rar_block cost %.2f minutes' % (topK, i+1, save_start - block_end, (save_start - rar_start) / 60.0)
#for r, c in zip(global_row_inds, global_col_inds):
# triplets.append((ind2rid[r], ind2rid[c], 1))
#filename = dir_ + 'sim_res/path_count/%s_block_res/%s.dat' % (i+1)
#save_triplets(filename, triplets)
#save_end = time.time()
#print 'finish processing block %s, res saved in %s, %s triplets, cost detail(total/compute/select/save): %.2f/%.2f/%.2f/%.2f seconds ' % (i+1, filename, len(triplets), save_end - block_start, block_end - block_start, save_start - block_end, save_end - save_start)
data = np.ones(len(rows))#use one to replace the weights
t4 = time.time()
RAR_csr = csr((data, (rows, cols)), shape=[nR, nR])
t5 = time.time()
#print '10000 res to sparse matrix(%s) cost %.2f seconds' % (RAR_csr.shape, t5 - t4)
if DEBUG:
test = RAR_csr.toarray()
test_res = (test == debug_res)
if test_res.sum() == test.size:
print '!!!block matrix equals directly dot matrix, the res is correct!!!'
else:
print 'two matrices are not equal, the res is wrong!!!'
# make it symmetryic
RAR = 0.5 * (RAR_csr + RAR_csr.transpose())
RAR = RAR.ceil()#0.5 to 1, 1 to 1
if DEBUG:
import pdb;pdb.set_trace()
return RAR
def cal_yelp_all(split_num, dt):
global dir_
dir_ = 'data/%s/exp_split/%s/' % (dt, split_num)
for path_str in ['UPBCatB','UPBCityB', 'UPBStateB', 'UPBStarsB']:
cal_comm_mat_UBB(path_str)
for path_str in ['UPBUB', 'UNBUB', 'URPARUB', 'URNARUB', 'UUB']:
cal_comm_mat_UUB(path_str)
for path_str in ['URPSRUB', 'URNSRUB']:
cal_rar(path_str)
cal_comm_mat_USUB(path_str)
if __name__ == '__main__':
if len(sys.argv) == 4:
dt = sys.argv[1]
path_str = sys.argv[2]
split_num = int(sys.argv[3])
if dt == 'UBB':
cal_comm_mat_UBB(path_str)
elif dt == 'UUB':
cal_comm_mat_UUB(path_str)
elif dt == 'USUB':
cal_comm_mat_USUB(path_str)
elif dt == 'RAR':
cal_rar(path_str)
elif path_str == 'all':
cal_yelp_all(split_num, dt)