-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathutils.py
63 lines (53 loc) · 1.77 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#coding=utf8
'''
utils
'''
import numpy as np
from scipy.sparse import csr_matrix as csr
def reverse_map(m):
return {v:k for k,v in m.items()}
def generate_adj_mat(relation, row_map, col_map, is_weight=False):
data, rows, cols = [],[],[]
for r in relation:
if is_weight:
data.append(r[2])
else:
data.append(1)
rows.append(row_map[r[0]])
cols.append(col_map[r[1]])
adj = csr((data,(rows,cols)),shape=[len(row_map), len(col_map)])
adj_t = csr((data,(cols, rows)),shape=[len(col_map), len(row_map)])
return adj, adj_t
def load_rand_data():
'''
return the features, labels, and the group inds
'''
S, N = 1000, 80
X = np.random.normal(size=[S,N])
Y = np.random.uniform(size=[S])
test_X = np.random.normal(size=[200, N])
test_Y = np.random.uniform(size=[200])
logger.info('train_data: (%.4f,%.4f), test_data: (%.4f,%.4f)', np.mean(Y), np.std(Y), np.mean(test_Y), np.std(test_Y))
return X, Y, test_X, test_Y
def save_lines(filename, res):
fw = open(filename, 'w+')
fw.write('\n'.join(res))
fw.close()
print 'save %s lines in %s' % (len(res), filename)
def save_triplets(filename, triplets, is_append=False):
if is_append:
fw = open(filename, 'a+')
fw.write('\n')
else:
fw = open(filename, 'w+')
fw.write('\n'.join(['%s\t%s\t%s' % (h,t,v) for h,t,v in triplets]))
fw.close()
print 'save %s triplets in %s' % (len(triplets), filename)
def test_save_triplets():
a = [(i,i**2, i**3) for i in range(10)]
filename = 'log/test_appending_mode2.txt'
for ind in xrange(0, len(a), 3):
tri = a[ind:ind+3]
save_triplets(filename, tri, is_append=True)
if __name__ == '__main__':
test_save_triplets()