forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
create_ncf_data.py
117 lines (98 loc) · 4.09 KB
/
create_ncf_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Binary to generate training/evaluation dataset for NCF model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
# pylint: disable=g-bad-import-order
from absl import app
from absl import flags
import tensorflow.compat.v2 as tf
# pylint: enable=g-bad-import-order
from official.recommendation import movielens
from official.recommendation import data_preprocessing
flags.DEFINE_string(
"data_dir", None,
"The input data dir at which training and evaluation tf record files "
"will be saved.")
flags.DEFINE_string("meta_data_file_path", None,
"The path in which input meta data will be written.")
flags.DEFINE_enum("dataset", "ml-20m", ["ml-1m", "ml-20m"],
"Dataset to be trained/evaluated.")
flags.DEFINE_enum(
"constructor_type", "bisection", ["bisection", "materialized"],
"Strategy to use for generating false negatives. materialized has a "
"precompute that scales badly, but a faster per-epoch construction "
"time and can be faster on very large systems.")
flags.DEFINE_integer("num_train_epochs", 14,
"Total number of training epochs to generate.")
flags.DEFINE_integer(
"num_negative_samples", 4,
"Number of negative instances to pair with positive instance.")
flags.DEFINE_integer(
"train_prebatch_size", 99000,
"Batch size to be used for prebatching the dataset "
"for training.")
flags.DEFINE_integer(
"eval_prebatch_size", 99000,
"Batch size to be used for prebatching the dataset "
"for training.")
FLAGS = flags.FLAGS
def prepare_raw_data(flag_obj):
"""Downloads and prepares raw data for data generation."""
movielens.download(flag_obj.dataset, flag_obj.data_dir)
data_processing_params = {
"train_epochs": flag_obj.num_train_epochs,
"batch_size": flag_obj.train_prebatch_size,
"eval_batch_size": flag_obj.eval_prebatch_size,
"batches_per_step": 1,
"stream_files": True,
"num_neg": flag_obj.num_negative_samples,
}
num_users, num_items, producer = data_preprocessing.instantiate_pipeline(
dataset=flag_obj.dataset,
data_dir=flag_obj.data_dir,
params=data_processing_params,
constructor_type=flag_obj.constructor_type,
epoch_dir=flag_obj.data_dir,
generate_data_offline=True)
# pylint: disable=protected-access
input_metadata = {
"num_users": num_users,
"num_items": num_items,
"constructor_type": flag_obj.constructor_type,
"num_train_elements": producer._elements_in_epoch,
"num_eval_elements": producer._eval_elements_in_epoch,
"num_train_epochs": flag_obj.num_train_epochs,
"train_prebatch_size": flag_obj.train_prebatch_size,
"eval_prebatch_size": flag_obj.eval_prebatch_size,
"num_train_steps": producer.train_batches_per_epoch,
"num_eval_steps": producer.eval_batches_per_epoch,
}
# pylint: enable=protected-access
return producer, input_metadata
def generate_data():
"""Creates NCF train/eval dataset and writes input metadata as a file."""
producer, input_metadata = prepare_raw_data(FLAGS)
producer.run()
with tf.io.gfile.GFile(FLAGS.meta_data_file_path, "w") as writer:
writer.write(json.dumps(input_metadata, indent=4) + "\n")
def main(_):
generate_data()
if __name__ == "__main__":
flags.mark_flag_as_required("data_dir")
flags.mark_flag_as_required("meta_data_file_path")
app.run(main)