-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
370 lines (253 loc) · 11.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import pickle
import timeit
from torch_geometric.data import DataLoader
from sklearn.metrics import roc_auc_score, precision_score, recall_score, precision_recall_curve, auc, f1_score
from tqdm import tqdm
from torch.nn.utils import clip_grad_norm_
import torch.optim as optim
import random
import logging
from sklearn import metrics
import gc
import os
from DTIModel import *
from pytorch_optimizer import Lookahead
class Trainer(object):
def __init__(self, model, batch_size, num_training_steps):
self.model = model
self.num_training_steps = num_training_steps
self.optimizer_inner = optim.SGD(self.model.parameters(),
lr=lr, weight_decay=weight_decay)
self.optimizer = Lookahead(self.optimizer_inner, k=5, alpha=0.5)
self.batch_size = batch_size
def train(self, dataloader, epoch, es):
N = len(dataloader)
#
train_labels = []
train_preds = []
loss_total = 0
tk = tqdm(dataloader, desc="Training epoch: " + str(epoch))
for i, data in enumerate(tk):
proteins = data.protein.view(int(data.y.size()[0]), -1)
data, proteins = data.to(device), proteins.to(device)
loss, logits = self.model(data, proteins)
preds = logits.max(1)[1]
self.optimizer.zero_grad()
loss.backward()
clip_grad_norm_(parameters=self.model.parameters(), max_norm=5)
self.optimizer.step()
loss_total += loss.item()
tk.set_postfix(
{'loss': '%.6f' % float(loss_total / (i + 1)), 'LR': self.optimizer.param_groups[0]['lr'], 'ES': es})
train_labels.extend(data.y.cpu())
train_preds.extend(preds.cpu())
if np.isnan(loss_total):
print(proteins.size())
print(data)
print(data.x)
print(data.y)
print(data.edge_index)
exit()
if i % 1000 == 0:
del loss
del preds
gc.collect()
torch.cuda.empty_cache()
train_accu = metrics.accuracy_score(train_labels, train_preds)
return loss_total, train_accu
class ATester(object):
def __init__(self, model, batch_size):
self.model = model
self.batch_size = batch_size
def test(self, dataset):
N = len(dataset)
T, Y, S = [], [], []
with torch.no_grad():
for data in dataset:
proteins = data.protein.view(int(data.y.size()[0]), -1)
(correct_labels, predicted_labels,
predicted_scores) = self.model(data.to(device), proteins.to(device), train=False)
T.extend(correct_labels)
Y.extend(predicted_labels)
S.extend(predicted_scores)
tpr, fpr, _ = precision_recall_curve(T, S)
PRC = auc(fpr, tpr)
train_accu = metrics.accuracy_score(T, Y)
AUC = roc_auc_score(T, S)
precision = precision_score(T, Y)
recall = recall_score(T, Y)
f1 = f1_score(T, Y)
return AUC, precision, recall, f1, train_accu, PRC
def save_AUCs(self, AUCs, filename):
with open(filename, 'a+') as f:
f.write('\t'.join(map(str, AUCs)) + '\n')
def save_model(self, model, filename):
torch.save(model.state_dict(), filename)
def load_tensor(file_name, dtype):
return [dtype(d).to(device) for d in np.load(file_name + '.npy')]
def load_pickle(file_name):
with open(file_name, 'rb') as f:
return pickle.load(f)
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def random_shuffle(dataset, seed):
random.seed(seed)
random.shuffle(dataset)
return dataset
def train(DATASET, fold, save_auc, co_attention, GCN_pooling, random_seed, log_write=False):
dir_input = ('dataset/' + DATASET + '/input/final/''radius' + str(
radius) + '_ngram' + str(ngram) + '_max_len' + str(MAX_LENGTH) + '/')
setup_seed(random_seed)
if fold == 0:
train_dataset = torch.load(dir_input + 'drug-target_train_{}.pt'.format(MAX_LENGTH))
dev_dataset = torch.load(dir_input + 'drug-target_dev_{}.pt'.format(MAX_LENGTH))
test_dataset = torch.load(dir_input + 'drug-target_test_{}.pt'.format(MAX_LENGTH))
else:
train_dataset = torch.load(dir_input + 'drug-target_train_{}_{}.pt'.format(MAX_LENGTH, fold))
dev_dataset = torch.load(dir_input + 'drug-target_dev_{}_{}.pt'.format(MAX_LENGTH, fold))
test_dataset = torch.load(dir_input + 'drug-target_test_{}_{}.pt'.format(MAX_LENGTH, fold))
traindata_length = len(train_dataset)
testdata_length = len(test_dataset)
batch_size = 1
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
dev_loader = DataLoader(dev_dataset, batch_size=batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
fingerprint_dict = load_pickle(dir_input + 'fingerprint_dict.pickle')
word_dict = load_pickle(dir_input + 'word_dict.pickle')
n_fingerprint = len(fingerprint_dict)
n_word = len(word_dict) # 100 #len(word_dict)+1
print('n_word:{}'.format(n_word))
"""Set a model."""
num_training_steps = len(train_loader) * iteration
model = Dtis(n_fingerprint, dim, n_word, layer_output, layer_coa,
co_attention=co_attention,
gcn_pooling=GCN_pooling,
bert_l=bert_l).to(device)
trainer = Trainer(model, batch_size, num_training_steps)
tester = ATester(model, batch_size)
print('Training...')
start = timeit.default_timer()
CO_ATTENTION = co_attention
logging.info('DATASET: {}'.format(DATASET))
logging.info('TRAIN_DATASET_LENGTH: {}'.format(traindata_length))
logging.info('TEST_DATASET_LENGTH: {}'.format(testdata_length))
logging.info('MAX_LENGTH: {}'.format(MAX_LENGTH))
logging.info('RADIUS: {}'.format(radius))
logging.info('LEARNING RATE: {}'.format(lr))
logging.info('CO-ATTENTIOM: {}'.format(CO_ATTENTION))
logging.info('OPTIMIZER: {}'.format(optimizer))
logging.info('BATCH_SIZE: {}'.format(batch_size))
logging.info('MAX_EPOCHS: {}'.format(iteration))
logging.info('COA_LAYERS: {}'.format(layer_coa))
logging.info('fold: {}'.format(fold))
best_auc = 0
best_auc_dev = 0
es = 0 # early stopping counter
if GCN_pooling:
pooling = 'True'
else:
pooling = 'False'
log_header = 'DTI_Pred Version:\nDATASET={}\n 1.ngram={}, radius={}\n2. position embedding\n' \
'3. {} attention. In particular, we use protein as Query, drug as Key and Value to feed into the module.\n' \
' Use SGD optimizer.\n' \
'4. optimizer={}\n' \
'5. batch={}\n' \
' we cut the protein length to {} and set batch=1 since we want to get sequence-form out put by GraphSgae for the following co-attention.\n' \
'6. learning rate={}\n' \
'7. fold={}\n' \
'8. random_seed={}\n' \
'9. gcn pooling: {}\n'.format(DATASET, ngram, radius, CO_ATTENTION,
optimizer, batch_size,
MAX_LENGTH, lr, fold, random_seed, pooling)
if log_write:
log_dir = '../log/' + DATASET + '/DTI_Pred/'
if fold == 0:
file_name = 'radius{}_ngram{}_{}_batch{}_{}'.format(radius, ngram, layer_coa, batch_size,
MAX_LENGTH) + '.log'
if not os.path.isdir(log_dir):
os.makedirs(log_dir)
f_path = os.path.join(log_dir, file_name)
with open(f_path, 'a+') as f:
f.write(log_header)
print(config)
with open(f_path, 'a+') as f:
f.write(str(config))
for epoch in range(0, iteration):
loss_train, train_accu = trainer.train(train_loader, epoch, es)
AUC_dev = tester.test(dev_loader)
AUC_test, precision_test, recall_test, f1_test, acc_test, PRC_test = tester.test(test_loader)
end = timeit.default_timer()
time = end - start
AUCs = [epoch, time, loss_train, train_accu, AUC_dev,
AUC_test, precision_test, recall_test, f1_test, acc_test, PRC_test]
if log_write:
tester.save_AUCs(AUCs, f_path)
print('\t'.join(map(str, AUCs)))
if AUC_test > best_auc:
best_auc = AUC_test
if best_auc > save_auc:
save_dir = '../output/model/' + DATASET + '/DTI_Pred_radius{}_ngram{}_{}/'.format(
radius, ngram, MAX_LENGTH)
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
if fold == 0:
model_filename = (
'{}-{}--{}--{:.5f}.pkl'.format(DATASET, batch_size, co_attention, best_auc))
else:
model_filename = (
'{}-{}--fold{}---{:.5f}.pkl'.format(DATASET, batch_size, fold, best_auc))
model_path = os.path.join(save_dir, model_filename)
torch.save(model.state_dict(), model_path)
print(r'Saved the new best model (valid auc: {}; test auc: {}) to {}'.format(AUC_dev, AUC_test,
model_path))
# early stop mechanism
if AUC_dev[0] > best_auc_dev:
best_auc_dev = AUC_dev[0]
es = 0
elif AUC_dev[0] <= best_auc_dev:
es += 1
if es > 15:
print('Early stopping counter reaches to 90, the training will stop')
break
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(levelname)-8s %(message)s')
"""Hyperparameters."""
radius = 2
ngram = 3
MAX_LENGTH = 4000
dim = 512
layer_gnn = 3
side = 5
window = 2 * side + 1
layer_output = 3
layer_coa = 1
lr = 5e-3
lr_decay = 0.5
decay_interval = 20
weight_decay = 1e-3
iteration = 100
optimizer = 'lookahead-SGD'
bert_l = 0.1
(dim, layer_gnn, window, layer_output, layer_coa, decay_interval,
iteration) = map(int, [dim, layer_gnn, window, layer_output, layer_coa,
decay_interval, iteration])
lr, lr_decay, weight_decay = map(float, [lr, lr_decay, weight_decay])
config = {'radius': radius, 'ngram': ngram, 'MAX_LENGTH': MAX_LENGTH, 'dim': dim, 'layer_gnn': layer_gnn
, 'window': window, 'layer_output': layer_output, 'layer_coa': layer_coa, 'decay_interval': decay_interval,
'iteration': iteration, 'lr': lr, 'lr_decay': lr_decay, 'weight_decay': weight_decay,
'optimizer': optimizer, 'bertlamda': bert_l}
"""CPU or GPU."""
if torch.cuda.is_available():
torch.cuda.set_device(0)
device = torch.device('cuda')
print('The code uses GPU...')
else:
device = torch.device('cpu')
print('The code uses CPU!!!')
train('human', 0, 0.98, 'inter', False, 1, True)
# train('celegans', 0, 0.98, 'inter', False, 1, True)