Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Usage]: The prompt bucket shape will not impact the performance #209

Open
JunxiChhen opened this issue Aug 28, 2024 · 0 comments
Open

[Usage]: The prompt bucket shape will not impact the performance #209

JunxiChhen opened this issue Aug 28, 2024 · 0 comments
Labels
intel Issues or PRs submitted by Intel

Comments

@JunxiChhen
Copy link

Your current environment

I am testing the offline performance using benchmark_latency.py. And I found there's no any increasing/decreasing when I change the prompt bucket shape, even I use (1,1).

How would you like to use vllm

Prompt bucket config (min, step, max_warmup) bs:[1, 1, 1], seq:[1, 1, 1]:

6: INFO 08-28 11:12:47 habana_model_runner.py:1128] Graph/Prompt captured:1 (100.0%) used_mem:0 B buckets:[(1, 1)]
6: INFO 08-28 11:12:47 habana_model_runner.py:1128] Graph/Decode captured:72 (100.0%) used_mem:3.239 GiB buckets:[(1, 128), (1, 256), (1, 384), (1, 512), (1, 640), (1, 768), (1, 896), (1, 1024), (1, 1152), (2, 128), (2, 256), (2, 384), (2, 512), (2, 640), (2, 768), (2, 896), (2, 1024), (2, 1152), (4, 128), (4, 256), (4, 384), (4, 512), (4, 640), (4, 768), (4, 896), (4, 1024), (4, 1152), (8, 128), (8, 256), (8, 384), (8, 512), (8, 640), (8, 768), (8, 896), (8, 1024), (8, 1152), (16, 128), (16, 256), (16, 384), (16, 512), (16, 640), (16, 768), (16, 896), (16, 1024), (16, 1152), (32, 128), (32, 256), (32, 384), (32, 512), (32, 640), (32, 768), (32, 896), (32, 1024), (32, 1152), (64, 128), (64, 256), (64, 384), (64, 512), (64, 640), (64, 768), (64, 896), (64, 1024), (64, 1152), (128, 128), (128, 256), (128, 384), (128, 512), (128, 640), (128, 768), (128, 896), (128, 1024), (128, 1152)]
6: INFO 08-28 11:12:47 habana_model_runner.py:1206] Warmup finished in 45 secs, allocated 3.451 GiB of device memory
6: INFO 08-28 11:12:47 habana_executor.py:91] init_cache_engine took 46.45 GiB of device memory (61.43 GiB/94.62 GiB used) and 2.484 GiB of host memory (61.33 GiB/1007 GiB used)
6: SamplingParams(n=1, best_of=1, presence_penalty=0.0, frequency_penalty=0.0, repetition_penalty=1.0, temperature=1.0, top_p=1.0, top_k=-1, min_p=0.0, seed=None, use_beam_search=False, length_penalty=1.0, early_stopping=False, stop=[], stop_token_ids=[], include_stop_str_in_output=False, ignore_eos=True, max_tokens=128, min_tokens=0, logprobs=None, prompt_logprobs=None, skip_special_tokens=True, spaces_between_special_tokens=True, truncate_prompt_tokens=None)
6: Warming up...
Warmup iterations: 100%|██████████| 5/5 [01:08<00:00, 13.71s/it]
Profiling iterations: 100%|██████████| 10/10 [02:16<00:00, 13.64s/it]
6: E2E Throughput: 1200.877 tokens/sec.

Prompt bucket config (min, step, max_warmup) bs:[1, 64, 128], seq:[128, 128, 1024]:

6: INFO 08-28 11:25:56 habana_model_runner.py:1128] Graph/Prompt captured:18 (28.1%) used_mem:19.79 GiB buckets:[(1, 128), (1, 256), (1, 384), (1, 512), (1, 640), (1, 768), (1, 896), (1, 1024), (2, 128), (2, 256), (2, 384), (2, 512), (2, 640), (2, 768), (4, 128), (4, 256), (4, 384), (8, 128)]
6: INFO 08-28 11:25:56 habana_model_runner.py:1128] Graph/Decode captured:72 (100.0%) used_mem:3.239 GiB buckets:[(1, 128), (1, 256), (1, 384), (1, 512), (1, 640), (1, 768), (1, 896), (1, 1024), (1, 1152), (2, 128), (2, 256), (2, 384), (2, 512), (2, 640), (2, 768), (2, 896), (2, 1024), (2, 1152), (4, 128), (4, 256), (4, 384), (4, 512), (4, 640), (4, 768), (4, 896), (4, 1024), (4, 1152), (8, 128), (8, 256), (8, 384), (8, 512), (8, 640), (8, 768), (8, 896), (8, 1024), (8, 1152), (16, 128), (16, 256), (16, 384), (16, 512), (16, 640), (16, 768), (16, 896), (16, 1024), (16, 1152), (32, 128), (32, 256), (32, 384), (32, 512), (32, 640), (32, 768), (32, 896), (32, 1024), (32, 1152), (64, 128), (64, 256), (64, 384), (64, 512), (64, 640), (64, 768), (64, 896), (64, 1024), (64, 1152), (128, 128), (128, 256), (128, 384), (128, 512), (128, 640), (128, 768), (128, 896), (128, 1024), (128, 1152)]
6: INFO 08-28 11:25:56 habana_model_runner.py:1206] Warmup finished in 146 secs, allocated 23.03 GiB of device memory
6: INFO 08-28 11:25:56 habana_executor.py:91] init_cache_engine took 61.18 GiB of device memory (85.15 GiB/94.62 GiB used) and 2.813 GiB of host memory (61.55 GiB/1007 GiB used)
6: SamplingParams(n=1, best_of=1, presence_penalty=0.0, frequency_penalty=0.0, repetition_penalty=1.0, temperature=1.0, top_p=1.0, top_k=-1, min_p=0.0, seed=None, use_beam_search=False, length_penalty=1.0, early_stopping=False, stop=[], stop_token_ids=[], include_stop_str_in_output=False, ignore_eos=True, max_tokens=128, min_tokens=0, logprobs=None, prompt_logprobs=None, skip_special_tokens=True, spaces_between_special_tokens=True, truncate_prompt_tokens=None)
6: Warming up...
Warmup iterations: 100%|██████████| 5/5 [01:07<00:00, 13.57s/it]
Profiling iterations: 100%|██████████| 10/10 [02:16<00:00, 13.61s/it]
6: E2E Throughput: 1203.730 tokens/sec.

@kzawora-intel kzawora-intel added the intel Issues or PRs submitted by Intel label Aug 29, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
intel Issues or PRs submitted by Intel
Projects
None yet
Development

No branches or pull requests

2 participants