Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: Device Type HPU is not supported for torch.generator() API #627

Closed
1 task done
nageshdn opened this issue Dec 12, 2024 · 1 comment
Closed
1 task done

[Bug]: Device Type HPU is not supported for torch.generator() API #627

nageshdn opened this issue Dec 12, 2024 · 1 comment
Labels
bug Something isn't working

Comments

@nageshdn
Copy link

Your current environment

The output of `python collect_env.py`
Collecting environment information...
/usr/lib/python3.10/inspect.py:288: FutureWarning: `torch.distributed.reduce_op` is deprecated, please use `torch.distributed.ReduceOp` instead
  return isinstance(object, types.FunctionType)
PyTorch version: 2.4.0a0+git74cd574
Is debug build: False
CUDA used to build PyTorch: None
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.22.1
Libc version: glibc-2.35

Python version: 3.10.12 (main, Nov  6 2024, 20:22:13) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-126-generic-x86_64-with-glibc2.35
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        46 bits physical, 57 bits virtual
Byte Order:                           Little Endian
CPU(s):                               192
On-line CPU(s) list:                  0-191
Vendor ID:                            GenuineIntel
Model name:                           Intel(R) Xeon(R) Platinum 8468
CPU family:                           6
Model:                                143
Thread(s) per core:                   2
Core(s) per socket:                   48
Socket(s):                            2
Stepping:                             8
BogoMIPS:                             4200.00
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
Virtualization:                       VT-x
L1d cache:                            4.5 MiB (96 instances)
L1i cache:                            3 MiB (96 instances)
L2 cache:                             192 MiB (96 instances)
L3 cache:                             210 MiB (2 instances)
NUMA node(s):                         2
NUMA node0 CPU(s):                    0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190
NUMA node1 CPU(s):                    1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99,101,103,105,107,109,111,113,115,117,119,121,123,125,127,129,131,133,135,137,139,141,143,145,147,149,151,153,155,157,159,161,163,165,167,169,171,173,175,177,179,181,183,185,187,189,191
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] habana-torch-dataloader==1.18.0.524
[pip3] habana-torch-plugin==1.18.0.524
[pip3] numpy==1.26.4
[pip3] pynvml==8.0.4
[pip3] pytorch-lightning==2.4.0
[pip3] pyzmq==26.2.0
[pip3] torch==2.4.0a0+git74cd574
[pip3] torch_tb_profiler==0.4.0
[pip3] torchaudio==2.4.0a0+69d4077
[pip3] torchdata==0.7.1+5e6f7b7
[pip3] torchmetrics==1.6.0
[pip3] torchtext==0.18.0a0+9bed85d
[pip3] torchvision==0.19.0a0+48b1edf
[pip3] transformers==4.47.0
[pip3] triton==3.1.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.1.dev3707+gab085c8 (git sha: ab085c8
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
Could not collect

Model Input Dumps

No response

🐛 Describe the bug

when HPU benchmarks scripts available with vllm is run with Gaudi cards, benchmarks/model execution is failing with error as Device Type HPU is not supported for torch.generator() API . Attached is the screenshot of

Command to run:
root@xmr-gaudi2-dell03:/vllm# python3 benchmarks/benchmark_latency.py --output-json results//latency_llama8B_tp1.json --model meta-llama/Meta-Llama-3-8B-Instruct --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@nageshdn nageshdn added the bug Something isn't working label Dec 12, 2024
@nageshdn
Copy link
Author

error 02
error 01
Attached is the screenshots

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants