-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAstar.cpp
201 lines (174 loc) · 4.9 KB
/
Astar.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/*read a maze from a file called board where every 0 represent a valid path, and an obstacle otherwise.
an example of a maze is the following.
0,0,0,0,0
1,0,0,1,0
1,1,0,0,0
the start is always top left, and the finish is always bottom left.
*/
#include <algorithm> // for sort
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
using std::abs;
using std::cout;
using std::ifstream;
using std::istringstream;
using std::sort;
using std::string;
using std::vector;
enum class State { kEmpty, kObstacle, kClosed, kPath, kStart, kFinish };
// directional deltas
const int delta[4][2]{{-1, 0}, {0, -1}, {1, 0}, {0, 1}};
vector<State> ParseLine(string line) {
istringstream sline(line);
int n;
char c;
vector<State> row;
while (sline >> n >> c && c == ',') {
if (n == 0) {
row.push_back(State::kEmpty);
} else {
row.push_back(State::kObstacle);
}
}
return row;
}
vector<vector<State>> ReadBoardFile(string path) {
ifstream myfile(path);
vector<vector<State>> board{};
if (myfile) {
string line;
while (getline(myfile, line)) {
vector<State> row = ParseLine(line);
board.push_back(row);
}
}
return board;
}
/**
* Compare the F values of two cells.
*/
bool Compare(const vector<int> a, const vector<int> b) {
int f1 = a[2] + a[3]; // f1 = g1 + h1
int f2 = b[2] + b[3]; // f2 = g2 + h2
return f1 > f2;
}
/**
* Sort the two-dimensional vector of ints in descending order.
*/
void CellSort(vector<vector<int>> *v) { sort(v->begin(), v->end(), Compare); }
// Calculate the manhattan distance
int Heuristic(int x1, int y1, int x2, int y2) {
return abs(x2 - x1) + abs(y2 - y1);
}
/**
* Check that a cell is valid: on the grid, not an obstacle, and clear.
*/
bool CheckValidCell(int x, int y, vector<vector<State>> &grid) {
bool on_grid_x = (x >= 0 && x < grid.size());
bool on_grid_y = (y >= 0 && y < grid[0].size());
if (on_grid_x && on_grid_y)
return grid[x][y] == State::kEmpty;
return false;
}
/**
* Add a node to the open list and mark it as open.
*/
void AddToOpen(int x, int y, int g, int h, vector<vector<int>> &openlist,
vector<vector<State>> &grid) {
// Add node to open vector, and mark grid cell as closed.
openlist.push_back(vector<int>{x, y, g, h});
grid[x][y] = State::kClosed;
}
/**
* Expand current nodes's neighbors and add them to the open list.
*/
void ExpandNeighbors(const vector<int> ¤t, int goal[2],
vector<vector<int>> &openlist,
vector<vector<State>> &grid) {
// Get current node's data.
int x = current[0];
int y = current[1];
int g = current[2];
// Loop through current node's potential neighbors.
for (int i = 0; i < 4; i++) {
int x2 = x + delta[i][0];
int y2 = y + delta[i][1];
// Check that the potential neighbor's x2 and y2 values are on the grid and
// not closed.
if (CheckValidCell(x2, y2, grid)) {
// Increment g value and add neighbor to open list.
int g2 = g + 1;
int h2 = Heuristic(x2, y2, goal[0], goal[1]);
AddToOpen(x2, y2, g2, h2, openlist, grid);
}
}
}
vector<vector<State>> Search(vector<vector<State>> grid, int init[2],
int goal[2]) {
// Create the vector of open nodes.
vector<vector<int>> open{};
// Initialize the starting node.
int x = init[0];
int y = init[1];
int g = 0;
int h = Heuristic(x, y, goal[0], goal[1]);
AddToOpen(x, y, g, h, open, grid);
while (open.size() > 0) {
// Get the next node
CellSort(&open);
auto current = open.back();
open.pop_back();
x = current[0];
y = current[1];
grid[x][y] = State::kPath;
// Check if we're done.
if (x == goal[0] && y == goal[1]) {
// set the goal grid cell to kFinish before returning the grid.
int x_init = init[0];
int y_init = init[1];
int des_x = goal[0];
int des_y = goal[1];
grid[x_init][y_init] = State::kStart;
grid[des_x][des_y] = State::kFinish;
return grid;
}
// If we're not done, expand search to current node's neighbors.
ExpandNeighbors(current, goal, open, grid);
}
// We've run out of new nodes to explore and haven't found a path.
cout << "No path found!"
<< "\n";
return std::vector<vector<State>>{};
}
string CellString(State cell) {
switch (cell) {
case State::kObstacle:
return "⛰️ ";
case State::kPath:
return "🚗 ";
case State::kStart:
return "🚦 ";
case State::kFinish:
return "🏁 ";
default:
return "0 ";
}
}
void PrintBoard(const vector<vector<State>> board) {
for (int i = 0; i < board.size(); i++) {
for (int j = 0; j < board[i].size(); j++) {
cout << CellString(board[i][j]);
}
cout << "\n";
}
}
int main() {
int init[2]{0, 0};
int goal[2]{4, 5};
auto board = ReadBoardFile("1.board");
auto solution = Search(board, init, goal);
PrintBoard(solution);
}