-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplugin_stats.py
146 lines (131 loc) · 4.15 KB
/
plugin_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from github import Github
from collections import Counter
from datetime import datetime, timezone
from statistics import mean, median
import os
import pandas as pd
# import matplotlib.pyplot as plt
if not os.getenv("STATS_TOKEN"):
raise ValueError("GitHub token is not set in the environment.")
g = Github(
os.getenv("STATS_TOKEN")
)
repo = g.get_repo("HandcartCactus/obsidian-remove-newlines")
releases = list(repo.get_releases())
latest_release = repo.get_latest_release()
issues = list(repo.get_issues(state="all"))
traffic = repo.get_views_traffic()
all_closed_issues = [issue for issue in issues if issue.state == "closed"]
all_open_issues = [issue for issue in issues if issue.state == "open"]
release_dates = [release.created_at for release in releases]
release_dates.sort()
stats = {}
latest_release_tag_name = latest_release.tag_name
release_downloads = {
release.tag_name: sum(
asset.download_count
for asset in release.get_assets()
if asset.name == "main.js"
)
for release in releases
}
top_referrers = {
referrer.referrer: referrer.count for referrer in repo.get_top_referrers()
}
closed_issues = len(list(all_closed_issues))
open_issues = len(list(all_open_issues))
closure_rate = round(closed_issues / (closed_issues + open_issues), 2)
median_closure_seconds = (
None
if not all_closed_issues
else median(
[
(issue.closed_at - issue.created_at).total_seconds()
for issue in all_closed_issues
]
)
)
average_time_between_releases_seconds = (
None
if len(release_dates) < 2
else mean(
(b - a).total_seconds() for a, b in zip(release_dates[:-1], release_dates[1:])
)
)
seconds_since_last_release = (
datetime.now(timezone.utc) - latest_release.created_at.astimezone(timezone.utc)
).total_seconds()
current_release_downloads = sum(
asset.download_count
for asset in latest_release.get_assets()
if asset.name == "main.js"
)
max_release_downloads = max(
sum(
asset.download_count
for asset in release.get_assets()
if asset.name == "main.js"
)
for release in releases
)
total_downloads = sum(
sum(
asset.download_count
for asset in release.get_assets()
if asset.name == "main.js"
)
for release in releases
)
est_users_non_current_release = max_release_downloads - current_release_downloads
unique_views = traffic["uniques"]
def scale_interval(seconds):
intervals = [
("year", 60 * 60 * 24 * 365),
("month", 60 * 60 * 24 * 30),
("week", 60 * 60 * 24 * 7),
("day", 60 * 60 * 24),
("hour", 60 * 60),
("minute", 60),
("second", 1),
]
for name, count in intervals:
value = seconds / count
if value >= 1:
return f"{value:.1f} {name}{'s' if value != 1 else ''}"
return "0 seconds"
filename = "repo_stats.csv"
metrics = {
"data_as_of": datetime.now(timezone.utc),
"latest_release": latest_release.tag_name,
"stargazers_count": repo.stargazers_count,
"closed_issues": closed_issues,
"open_issues": open_issues,
"closure_rate": closure_rate,
"median_closure_seconds": median_closure_seconds,
"average_time_between_releases_seconds": average_time_between_releases_seconds,
"seconds_since_last_release": seconds_since_last_release,
"current_release_downloads": current_release_downloads,
"max_release_downloads": max_release_downloads,
"total_downloads": total_downloads,
"est_users_non_current_release": est_users_non_current_release,
"unique_views": unique_views,
"release_downloads": release_downloads,
"top_referrers": top_referrers,
}
mdf = pd.DataFrame.from_records([metrics])
if os.path.exists(filename):
df = pd.read_csv(filename)
df = pd.concat([df, mdf], ignore_index=True)
else:
df = mdf
df["data_as_of"] = pd.to_datetime(df["data_as_of"])
df.to_csv(filename, index=False)
# print(df)
# print(df.info())
# print(df.describe())
# df.plot.line("data_as_of", "total_downloads")
# plt.title("Total Downloads Over Time")
# plt.xlabel("Time")
# plt.ylabel("Total Downloads")
# plt.tight_layout()
# plt.savefig("total_downloads_over_time.png")