Skip to content

Latest commit

 

History

History
25 lines (19 loc) · 734 Bytes

README.md

File metadata and controls

25 lines (19 loc) · 734 Bytes

paper_reimplementation

I followed-up berniwal/swin-transformer-pytorch for swin_transformer codes

Randaugment: Practical automated data augmentation with a reduced search space

  • Features Applies randomly selected augmentations with fixed magnitude to each mini-batch Supports PIL image as input under torchvision version 0.8.0 Supports PIL image and torch tensor under torchvision version 0.9.0

  • Usage

import torch
import torchvision
import torchvision.transform as tt
from randaugment import RandAugment

RA = RandAugment(3, 3)  # N, M
temp = tt.functional.to_pil_image(torch.randn(3, 5, 5))
result1 = RA(temp)
result2 = RA(temp)

dataset = torchvision.datasets.CIFAR10(..., transform=tt.Compose([RA]), ...)