forked from EbTech/rust-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathorder.rs
233 lines (207 loc) · 8.26 KB
/
order.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
//! Ordering algorithms.
/// A comparator on partially ordered elements, that panics if they are incomparable
///
/// # Example
///
/// ```
/// use contest_algorithms::order::asserting_cmp;
/// let mut vec = vec![4.5, -1.7, 1.2];
/// vec.sort_unstable_by(asserting_cmp);
/// assert_eq!(vec, vec![-1.7, 1.2, 4.5]);
/// ```
pub fn asserting_cmp<T: PartialOrd>(a: &T, b: &T) -> std::cmp::Ordering {
a.partial_cmp(b).expect("Comparing incomparable elements")
}
/// Assuming slice is sorted and totally ordered, returns the minimum i for which
/// slice[i] >= key, or slice.len() if no such i exists
pub fn slice_lower_bound<T: PartialOrd>(slice: &[T], key: &T) -> usize {
slice
.binary_search_by(|x| asserting_cmp(x, key).then(std::cmp::Ordering::Greater))
.unwrap_err()
}
/// Assuming slice is sorted and totally ordered, returns the minimum i for which
/// slice[i] > key, or slice.len() if no such i exists
pub fn slice_upper_bound<T: PartialOrd>(slice: &[T], key: &T) -> usize {
slice
.binary_search_by(|x| asserting_cmp(x, key).then(std::cmp::Ordering::Less))
.unwrap_err()
}
/// Stably merges two sorted and totally ordered collections into one
pub fn merge_sorted<T: PartialOrd>(
i1: impl IntoIterator<Item = T>,
i2: impl IntoIterator<Item = T>,
) -> Vec<T> {
let mut i1 = i1.into_iter().peekable();
let mut i2 = i2.into_iter().peekable();
let mut merged = Vec::with_capacity(i1.size_hint().0 + i2.size_hint().0);
while let (Some(a), Some(b)) = (i1.peek(), i2.peek()) {
merged.push(if a <= b { i1.next() } else { i2.next() }.unwrap());
}
merged.extend(i1.chain(i2));
merged
}
/// A stable sort
pub fn merge_sort<T: Ord>(mut v: Vec<T>) -> Vec<T> {
if v.len() < 2 {
v
} else {
let v2 = v.split_off(v.len() / 2);
merge_sorted(merge_sort(v), merge_sort(v2))
}
}
/// A simple data structure for coordinate compression
pub struct SparseIndex {
coords: Vec<i64>,
}
impl SparseIndex {
/// Builds an index, given the full set of coordinates to compress.
pub fn new(mut coords: Vec<i64>) -> Self {
coords.sort_unstable();
coords.dedup();
Self { coords }
}
/// Returns Ok(i) if the coordinate q appears at index i
/// Returns Err(i) if q appears between indices i-1 and i
pub fn compress(&self, q: i64) -> Result<usize, usize> {
self.coords.binary_search(&q)
}
}
/// Represents a maximum (upper envelope) of a collection of linear functions of one
/// variable, evaluated using an online version of the convex hull trick.
/// It combines the offline algorithm with square root decomposition, resulting in an
/// asymptotically suboptimal but simple algorithm with good amortized performance:
/// N inserts interleaved with Q queries yields O(N sqrt Q + Q log N) time complexity
/// in general, or O((N + Q) log N) if all queries come after all inserts.
// Proof: the Q log N term comes from calls to slice_lower_bound(). As for the N sqrt Q,
// note that between successive times when the hull is rebuilt, O(N) work is done,
// and the running totals of insertions and queries satisfy del_N (del_Q + 1) > N.
// Now, either del_Q >= sqrt Q, or else del_Q <= 2 sqrt Q - 1
// => del_N > N / (2 sqrt Q).
// Since del(N sqrt Q) >= max(N del(sqrt Q), del_N sqrt Q)
// >= max(N del_Q / (2 sqrt Q), del_N sqrt Q),
// we conclude that del(N sqrt Q) >= N / 2.
#[derive(Default)]
pub struct PiecewiseLinearConvexFn {
recent_lines: Vec<(f64, f64)>,
sorted_lines: Vec<(f64, f64)>,
intersections: Vec<f64>,
amortized_work: usize,
}
impl PiecewiseLinearConvexFn {
/// Replaces the represented function with the maximum of itself and a provided line
pub fn max_with(&mut self, new_m: f64, new_b: f64) {
self.recent_lines.push((new_m, new_b));
}
/// Similar to max_with but requires that (new_m, new_b) be the largest pair so far
fn max_with_sorted(&mut self, new_m: f64, new_b: f64) {
while let Some(&(last_m, last_b)) = self.sorted_lines.last() {
// If slopes are equal, get rid of the old line as its intercept is lower
if (new_m - last_m).abs() > 1e-9 {
let intersect = (new_b - last_b) / (last_m - new_m);
if self.intersections.last() < Some(&intersect) {
self.intersections.push(intersect);
break;
}
}
self.intersections.pop();
self.sorted_lines.pop();
}
self.sorted_lines.push((new_m, new_b));
}
/// Evaluates the function at x
fn eval_unoptimized(&self, x: f64) -> f64 {
let idx = slice_lower_bound(&self.intersections, &x);
self.recent_lines
.iter()
.chain(self.sorted_lines.get(idx))
.map(|&(m, b)| m * x + b)
.max_by(asserting_cmp)
.unwrap_or(-1e18)
}
/// Evaluates the function at x with good amortized runtime
pub fn evaluate(&mut self, x: f64) -> f64 {
self.amortized_work += self.recent_lines.len();
if self.amortized_work > self.sorted_lines.len() {
self.amortized_work = 0;
self.recent_lines.sort_unstable_by(asserting_cmp);
self.intersections.clear();
let all_lines = merge_sorted(self.recent_lines.drain(..), self.sorted_lines.drain(..));
for (new_m, new_b) in all_lines {
self.max_with_sorted(new_m, new_b);
}
}
self.eval_unoptimized(x)
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_bounds() {
let mut vals = vec![16, 45, 45, 45, 82];
assert_eq!(slice_upper_bound(&vals, &44), 1);
assert_eq!(slice_lower_bound(&vals, &45), 1);
assert_eq!(slice_upper_bound(&vals, &45), 4);
assert_eq!(slice_lower_bound(&vals, &46), 4);
vals.dedup();
for (i, q) in vals.iter().enumerate() {
assert_eq!(slice_lower_bound(&vals, q), i);
assert_eq!(slice_upper_bound(&vals, q), i + 1);
}
}
#[test]
fn test_merge_sorted() {
let vals1 = vec![16, 45, 45, 82];
let vals2 = vec![-20, 40, 45, 50];
let vals_merged = vec![-20, 16, 40, 45, 45, 45, 50, 82];
assert_eq!(merge_sorted(None, Some(42)), vec![42]);
assert_eq!(merge_sorted(vals1.iter().cloned(), None), vals1);
assert_eq!(merge_sorted(vals1, vals2), vals_merged);
}
#[test]
fn test_merge_sort() {
let unsorted = vec![8, -5, 1, 4, -3, 4];
let sorted = vec![-5, -3, 1, 4, 4, 8];
assert_eq!(merge_sort(unsorted), sorted);
assert_eq!(merge_sort(sorted.clone()), sorted);
}
#[test]
fn test_coord_compress() {
let mut coords = vec![16, 99, 45, 18];
let index = SparseIndex::new(coords.clone());
coords.sort_unstable();
for (i, q) in coords.into_iter().enumerate() {
assert_eq!(index.compress(q - 1), Err(i));
assert_eq!(index.compress(q), Ok(i));
assert_eq!(index.compress(q + 1), Err(i + 1));
}
}
#[test]
fn test_range_compress() {
let queries = vec![(0, 10), (10, 19), (20, 29)];
let coords = queries.iter().flat_map(|&(i, j)| vec![i, j + 1]).collect();
let index = SparseIndex::new(coords);
assert_eq!(index.coords, vec![0, 10, 11, 20, 30]);
}
#[test]
fn test_convex_hull_trick() {
let lines = [(0, -3), (-1, 0), (1, -8), (-2, 1), (1, -4)];
let xs = [0, 1, 2, 3, 4, 5];
// results[i] consists of the expected y-coordinates after processing
// the first i+1 lines.
let results = [
[-3, -3, -3, -3, -3, -3],
[0, -1, -2, -3, -3, -3],
[0, -1, -2, -3, -3, -3],
[1, -1, -2, -3, -3, -3],
[1, -1, -2, -1, 0, 1],
];
let mut func = PiecewiseLinearConvexFn::default();
assert_eq!(func.evaluate(0.0), -1e18);
for (&(slope, intercept), expected) in lines.iter().zip(results.iter()) {
func.max_with(slope as f64, intercept as f64);
let ys: Vec<i64> = xs.iter().map(|&x| func.evaluate(x as f64) as i64).collect();
assert_eq!(expected, &ys[..]);
}
}
}