-
Notifications
You must be signed in to change notification settings - Fork 9
/
benchmarking.py
299 lines (256 loc) · 10.2 KB
/
benchmarking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import argparse
import random
from pathlib import Path
import numpy as np
import scipy.io as sio
import torch
import hyde
from hyde import logging
# from torchvision.transforms import Compose
from hyde.nn.datasets.transforms import GaussianSNRLevel
logger = logging.get_logger()
import gc
import time
import pandas as pd
# function to generate the noisy images
def generate_noisy_images(base_image, save_loc, noise_type="gaussian"):
base_image = Path(base_image)
save_loc = Path(save_loc)
if noise_type == "gaussian":
noise_levels = (20, 30, 40)
transform = GaussianSNRLevel
kwargs = {}
# kwargs = {"scale_factor": 255.0 / 65517.0} # houston dataset is int16
else:
raise NotImplementedError("implement mixed/complex noise cases")
input = sio.loadmat(base_image)
imp_clean = input["houston"].reshape(input["houston"].shape, order="C").astype(np.float32)
# print(imp_clean.max())
# print(imp_clean.reshape((imp_clean.shape[0]*imp_clean.shape[1], imp_clean.shape[2])).max(0))
imp_torch = torch.from_numpy(imp_clean)
torch.manual_seed(42)
torch.cuda.manual_seed(42)
np.random.seed(42)
random.seed(42)
for nl in noise_levels:
sv_folder = save_loc / str(nl)
sv_folder.mkdir(exist_ok=True)
tfm = transform(nl, **kwargs)
print(sv_folder)
for i in range(15):
print(nl, i)
lp_img = tfm(imp_torch)
mdic = {"houston": lp_img.numpy(), "label": nl}
sio.savemat(sv_folder / f"{i}.mat", mdic)
gaussian_noise_removers_args = {
"WSRRR": {"rank": 10},
"HyMiNoR": {"lam": 10.0, "iterations": 50},
"FORPDN_SURE": {
"s_int_st": torch.tensor([0, 0, 0, 0]),
"s_int_step": torch.tensor([0.001, 0.01, 0.1, 1]),
"s_int_end": torch.tensor([0.01, 0.1, 1, 10]),
"domain": "wavelet",
"scale": True,
"scale_const": 255,
"wavelet_level": 6,
},
"HyRes": {},
"OTVCA": {"features": 6, "num_itt": 10, "lam": 0.01},
"FastHyDe": {"noise_type": "additive", "iid": True, "k_subspace": 10, "normalize": True},
"L1HyMixDe": {
"k_subspace": 8,
"p": 0.1,
"max_iter": 10, # 40
"normalize": True,
},
"nn": {"band_dim": -1, "normalize": True, "permute": True},
}
nn_noise_removers = {
"qrnn3d": "pretrained-models/qrnn3d/new-noise-gaussian-bs4x4-l2.pth",
"qrnn2d": "pretrained-models/qrnn2d/new-noise-gaussian-bs4x4-l2.pth",
"memnet": "pretrained-models/memnet/new-noise-gaussian-bs4x4-l2.pth",
"memnet3d": "pretrained-models/memnet3d/new-noise-gaussian-bs4x4-l2.pth",
"denet": "pretrained-models/denet/new-noise-gaussian-bs4x4-l2.pth",
"denet3d": "pretrained-models/denet3d/new-noise-gaussian-bs4x4-l2.pth",
"memnet_hyres": "pretrained-models/memnet_hyres/new-noise-gaussian-bs4x4-l2.pth",
"is2d": ["denet", "memnet", "memnet_hyres"],
}
# out_df -> cols = [method, 20dB, 30dB, 40dB]
def benchmark(file_loc, method, device, output, original):
# TODO: get the method, noise_level, and device from command line args
# method_results = {20: [], 30: [], 40: []}
if method not in nn_noise_removers:
nn = False
method_call = getattr(hyde, method)()
else:
# is2d = method in nn_noise_removers["2d-models"]
is2d = method in nn_noise_removers["is2d"]
method_call = hyde.NNInference(
arch=method,
pretrained_file=nn_noise_removers[method],
band_window=10,
window_shape=256,
)
nn = True
# TODO: load and update the pandas dict with the results
output = Path(output)
og = sio.loadmat(original)["houston"]
og = og.reshape(og.shape)
original_im = torch.from_numpy(og.astype(np.float32)).to(device=device)
out_df = None
for noise in [20, 30, 40]:
# todo: see if the file exists
working_dir = Path(file_loc) / str(noise)
psnrs, sads, times, mems, snrs = [], [], [], [], []
for c, fil in enumerate(working_dir.iterdir()): # data loading and method for each file
torch.cuda.reset_peak_memory_stats()
print(c, fil)
# 1. load data + convert to torch
dat_i = sio.loadmat(fil)
dat_i = dat_i["houston"]
dat_i = torch.from_numpy(dat_i).to(device=device, dtype=torch.float).contiguous()
# 2. start timer
t0 = time.perf_counter()
if nn:
kwargs = gaussian_noise_removers_args["nn"]
if is2d:
dat_i = dat_i.squeeze(1)
else:
kwargs = gaussian_noise_removers_args[method]
if len(kwargs) > 0:
# dat_i = dat_i if not is2d else dat_i[:, :, :31]#.contiguous()
res = method_call(dat_i, **kwargs)
else:
# dat_i = dat_i if not is2d else dat_i[:, :, :31]#.contiguous()
res = method_call(dat_i)
t1 = time.perf_counter() - t0
mems.append(torch.cuda.max_memory_allocated())
if isinstance(res, tuple):
res = res[0]
psnr = hyde.peak_snr(res, original_im)
snr, _ = hyde.snr(res, original_im)
sam = hyde.sam(res, original_im).mean()
times.append(t1)
psnrs.append(psnr.item())
sads.append(sam.item())
snrs.append(snr.item())
print(f"file: {fil} time: {t1}, psnr: {psnr}, sam: {sam}, snr: {snr}")
times = np.array(times)
psnrs = np.array(psnrs)
sads = np.array(sads)
snrs = np.array(snrs)
mem = np.array(mems)
tsorted = times.argsort()
good_idxs = tsorted # [1:-1]
times = times[good_idxs]
psnrs = psnrs[good_idxs]
sads = sads[good_idxs]
snrs = snrs[good_idxs]
mem = mem[good_idxs]
pd_dict = {
"noise": noise,
"method": method,
"device": device,
"psnr": psnrs.mean(),
"snr": snrs.mean(),
"sam": sads.mean(),
"time": times.mean(),
"memory": mem.mean(),
}
# save the results
ret_df = pd.DataFrame(pd_dict, index=[0], columns=list(pd_dict.keys()))
if out_df is None:
out_df = pd.DataFrame(pd_dict, index=[0], columns=list(pd_dict.keys()))
else:
out_df = pd.concat([out_df, ret_df], ignore_index=True, axis=0)
# print(out_df)
# print(ret_df)
noise_out = output / "python-benchmarks-new2.csv"
if not noise_out.exists():
out_df.to_csv(noise_out, index=False)
print(out_df)
else:
# load the existing DF and append to the bottom of it
existing = pd.read_csv(noise_out)
new = pd.concat([existing, out_df], ignore_index=True, axis=0)
new.to_csv(noise_out, index=False)
print(new)
def load_n_calc_snr(original, directory, method="fasthyde"):
print(method)
for noise in [20, 30, 40]:
# working_dir = Path(file_loc) / str(noise)
psnrs, sads, snrs = [], [], []
# for c, fil in enumerate(working_dir.iterdir()): # data loading and method for each file
for c in range(15):
# torch.cuda.reset_peak_memory_stats()
# 1. load data + convert to torch
mat = Path(directory) / f"{method}-denoised-nonorm-{noise}-{c}.mat"
# res = sio.loadmat(mat)["restored"]
res = torch.tensor(sio.loadmat(mat)["restored"], dtype=torch.float)
psnr = hyde.peak_snr(res, original)
snr, _ = hyde.snr(res, original)
sam = hyde.sam(res, original).mean()
psnrs.append(psnr.item())
sads.append(sam.item())
snrs.append(snr.item())
psnrs = np.array(psnrs)
sads = np.array(sads)
snrs = np.array(snrs)
pd_dict = {
"noise": noise,
"method": method,
"psnr": psnrs.mean(),
"snr": snrs.mean(),
"sam": sads.mean(),
}
# save the results
ret_df = pd.DataFrame(pd_dict, index=[0], columns=list(pd_dict.keys()))
print(noise)
print(ret_df)
if __name__ == "__main__":
# import os
# print(os.sched_getaffinity(0))
# torch.set_num_threads(24)
# print(torch.__config__.parallel_info())
# parser = argparse.ArgumentParser(description="HyDe Benchmarking")
# cla = hyde.nn.parsers.benchmark_parser(parser)
# print(cla)
# logger.info(cla)
# pd.set_option("display.max_rows", 500)
# pd.set_option("display.max_columns", 500)
# pd.set_option("display.width", 1000)
# generate_noisy_images(base_image="/mnt/ssd/hyde/houston.mat", save_loc="/mnt/ssd/hyde/")
# generate_noisy_images(base_image=cla.original_image, save_loc=cla.data_dir)
# benchmark(
# file_loc=cla.data_dir,
# method=cla.method,
# device=cla.device,
# output=cla.output_dir,
# original=cla.original_image,
# )
# # for method in gaussian_noise_removers_args:
# for method in nn_noise_removers:
# print(method)
# benchmark(
# "/mnt/ssd/hyde/",
# method=method,
# device="cuda",
# output="/mnt/ssd/hyde/",
# original="/mnt/ssd/hyde/houston.mat",
# )
methods = {
# "hyres": "/hkfs/work/workspace/scratch/qv2382-hyde2/matlab-stuff/hyminor",
# "hyminor": "/hkfs/work/workspace/scratch/qv2382-hyde2/matlab-stuff/hyminor",
# "wsrrr": "/hkfs/work/workspace/scratch/qv2382-hyde2/matlab-stuff/hyminor",
# "otvca": "/hkfs/work/workspace/scratch/qv2382-hyde2/matlab-stuff/otvca",
# "fosrpdn": "/hkfs/work/workspace/scratch/qv2382-hyde2/matlab-stuff/forpdn",
# "fasthyde": "/hkfs/work/workspace/scratch/qv2382-hyde2/matlab-stuff/fasthyde/Demo_FastHyDe_FastHyIn/",
"l1hymixde": "/hkfs/work/workspace/scratch/qv2382-hyde2/matlab-stuff/lyhymixde/L1HyMixDe/",
}
og = sio.loadmat("/hkfs/work/workspace/scratch/qv2382-hyde2/benchmark-data/houston.mat")[
"houston"
]
og = og.reshape(og.shape)
original_im = torch.from_numpy(og.astype(np.float32))
for method in methods:
load_n_calc_snr(original=original_im, directory=methods[method], method=method)