-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_fps.py
111 lines (88 loc) · 3.74 KB
/
test_fps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
import time
import cv2
import numpy as np
import torch
from scipy import io as scio
from torch.utils.data import DataLoader
from dataset import MyTestDataSet
from utils import torch_psnr, torch_ssim
from net import PGU
from physical_model import get_cameraSpectralResponse_cuda, get_AAt_dual
import argparse
def parse_args():
parser = argparse.ArgumentParser(description="Your script description here.")
parser.add_argument("--gpu_id", type=int, default=0, help="GPU ID")
parser.add_argument("--batch_size", type=int, default=1, help="Batch size")
parser.add_argument("--test_path", type=str, default="./data/Truth/", help="Path to test data")
parser.add_argument("--weight_path", type=str, default="./ckpts/In2SET_2stg.pth", help="Path to the pre-trained model")
parser.add_argument("--mask_path", type=str, default="./data/", help="Path to mask data")
parser.add_argument("--result_path", type=str, default="./testing_result/", help="Path to save testing results")
args = parser.parse_args()
return args
args = parse_args()
print("-"*5+"Parameter settings"+"-"*5)
print(f"Using GPU ID: {args.gpu_id}")
print(f"Batch size: {args.batch_size}")
print(f"Test path: {args.test_path}")
print(f"Weight path: {args.weight_path}")
print(f"Mask path: {args.mask_path}")
print(f"Result path: {args.result_path}")
print("-"*15+"\n")
gpu_id = args.gpu_id
batch_size = args.batch_size
test_path = args.test_path
weight_path = args.weight_path
mask_path = args.mask_path
result_path = args.result_path
if not os.path.exists(result_path):
os.makedirs(result_path)
os.environ["CUDA_DEVICE_ORDER"] = 'PCI_BUS_ID'
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
if not torch.cuda.is_available():
raise Exception('NO GPU!')
stage_num = int(os.path.basename(weight_path).split("_")[1][0])
def generate_shift_masks(mask_path, batch_size):
mask = scio.loadmat(mask_path + 'mask_3d_shift.mat')
mask_3d_shift = mask['mask_3d_shift']
mask_3d_shift = np.transpose(mask_3d_shift, [2, 0, 1])
mask_3d_shift = torch.from_numpy(mask_3d_shift)
[nC, H, W] = mask_3d_shift.shape
Phi_batch = mask_3d_shift.expand([batch_size, nC, H, W]).cuda().float()
return Phi_batch
# define operator
class Option:
batch_size=batch_size
opt = Option()
dual_A,dual_At,shift,shift_back = get_AAt_dual(opt)
cameraSpectralResponse_cuda = get_cameraSpectralResponse_cuda()
Phi_batch = generate_shift_masks(mask_path, opt.batch_size)
physical_operator = (dual_A,dual_At,shift,shift_back)
physical_data = (Phi_batch, cameraSpectralResponse_cuda)
def test():
testSet = MyTestDataSet(test_path, transform=None)
testLoader = DataLoader(testSet, batch_size=batch_size,shuffle=False, num_workers=0,drop_last=True)
model = PGU(num_iterations=stage_num,physical_operator=physical_operator).cuda()
model.load_state_dict(torch.load(weight_path))
model.eval()
print("Machine warm up")
measurements = []
gts = []
for x, _ in testLoader:
x,test_gt = x.cuda(),x.cuda()
input_meas = dual_A(x)
gts.append(test_gt)
measurements.append(input_meas)
with torch.no_grad():
model_out = model(input_meas, physical_data)
print("-----Start of inference time testing-----")
tic = time.time()
with torch.no_grad():
for i,input_meas in enumerate(measurements):
model_out = model(input_meas, physical_data)
toc = time.time()
print(f"-----End of inference time testing-----")
total_time = toc - tic
print(f"The time taken is {total_time} seconds for 10 scenes. The frames per second (FPS) rate is {1/(total_time/10)}")
if __name__ == '__main__':
test()