-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
83 lines (75 loc) · 2.85 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# we disable profiling before importing tango
import os
os.environ['TANGO_NO_PROFILE'] = 'y'
from tango.fuzzer import Fuzzer
from tango.common import create_session_context
from pathlib import Path
import numpy as np
import asyncio
import argparse
import logging
import json
def create_argparse():
parser = argparse.ArgumentParser(description=(
"Runs state inference on a seed corpus and outputs results."
))
parser.add_argument("-C", "--corpus", type=Path, required=True,
help="The path to the seed corpus directory.")
parser.add_argument("-O", "--out", type=Path, required=False,
help="The path to the output file (stdout otherwise).")
return parser
async def run_inference(session, *, outfile=None):
# strategy is already instantiated, we only get a reference to it
strat = await session.owner.instantiate('strategy')
tracker = await session.owner.instantiate('tracker')
while True:
while (rem := len(tracker.unmapped_snapshots)) >= strat._inference_batch:
logging.info(f"Remaining snapshots: {rem}")
await strat.step()
if rem == 0:
break
# flush the remaining nodes
strat._inference_batch = rem
groupings = {str(k): [str(vv) for vv in list(v)] for k, v in tracker.equivalence.states.items()}
dump = json.dumps(groupings, cls=NumpyEncoder)
if outfile:
logging.info(f"Dumping the groupings to {outfile}")
outfile.write_text(dump)
else:
print(dump)
logging.info("Done!")
async def infer(fuzzer, **kwargs):
async with asyncio.TaskGroup() as tg:
context = create_session_context(tg)
session = await tg.create_task(
fuzzer.create_session(context), context=context)
await tg.create_task(run_inference(session, **kwargs), context=context)
def main():
parser = create_argparse()
argspace, rest = parser.parse_known_args()
overrides = {
'generator.seeds': str(argspace.corpus),
'strategy.type': 'inference',
'strategy.inference_batch': 50,
'strategy.recursive_collapse': True,
'strategy.disperse_heat': True,
'strategy.broadcast_state_schedule': True,
'generator.broadcast_mutation_feedback': True,
'strategy.extend_on_groups': True,
'strategy.dt_predict': True,
'strategy.dt_extrapolate': True,
}
fuzzer = Fuzzer(args=rest, overrides=overrides)
asyncio.run(infer(fuzzer, outfile=argspace.out))
class NumpyEncoder(json.JSONEncoder):
""" Special json encoder for numpy types """
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
return super().default(obj)
if __name__ == '__main__':
main()