-
Notifications
You must be signed in to change notification settings - Fork 276
/
Copy pathtest_api.py
202 lines (177 loc) · 6.51 KB
/
test_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
"""
This file contains tests for the API of your model. You can run these tests by installing test requirements:
```bash
pip install -r requirements-test.txt
```
Then execute `pytest` in the directory of this file.
- Change `NewModel` to the name of the class in your model.py file.
- Change the `request` and `expected_response` variables to match the input and output of your model.
"""
import pytest
import json
from model import HuggingFaceNER
import unittest.mock as mock
@pytest.fixture
def client():
from _wsgi import init_app
app = init_app(model_class=HuggingFaceNER)
app.config['TESTING'] = True
with app.test_client() as client:
yield client
def test_predict(client):
request = {
'tasks': [{
'data': {
'text': 'President Obama is speaking at 3pm today in New York.'
}
}],
# Your labeling configuration here
'label_config': '''
<View>
<Text name="text" value="$text"/>
<Labels name="ner" toName="text">
<Label value="Person"/>
<Label value="Location"/>
<Label value="Time"/>
</Labels>
</View>
'''
}
expected_response = {
'results': [{
'model_version': 'HuggingFaceNER-v0.0.1',
'result': [{
'from_name': 'ner',
'score': 0.9974774718284607,
'to_name': 'text',
'type': 'labels',
'value': {
'end': 15,
'labels': ['PER'],
'start': 10}},
{'from_name': 'ner',
'score': 0.9994751214981079,
'to_name': 'text',
'type': 'labels',
'value': {'end': 52,
'labels': ['LOC'],
'start': 44}}],
'score': 0.9984762966632843}]
}
response = client.post('/predict', data=json.dumps(request), content_type='application/json')
assert response.status_code == 200
response = json.loads(response.data)
assert response['results'][0]['model_version'] == expected_response['results'][0]['model_version']
assert response['results'][0]['result'][0]['value'] == expected_response['results'][0]['result'][0]['value']
assert response['results'][0]['result'][1]['value'] == expected_response['results'][0]['result'][1]['value']
# mock response of label_studio_sdk.Project.get_labeled_tasks() and return the list of Label Studio tasks with NER annotations
def get_labeled_tasks_mock(self, project_id):
return [
{
'id': '0',
'data': {'text': 'President Obama is speaking at 3pm today in New York'},
'annotations': [
{
'result': [
{
'from_name': 'ner',
'to_name': 'text',
'type': 'labels',
'value': {
'start': 10,
'end': 15,
'labels': ['Person']
}
},
{
'from_name': 'ner',
'to_name': 'text',
'type': 'labels',
'value': {
'start': 44,
'end': 52,
'labels': ['Location']
}
},
{
'from_name': 'ner',
'to_name': 'text',
'type': 'labels',
'value': {
'start': 31,
'end': 40,
'labels': ['Time']
}
}
]
}
]
}
]
# mock NewModel.START_TRAINING_EACH_N_UPDATES to 1 to trigger training in the test
@pytest.fixture
def mock_start_training():
with mock.patch.object(HuggingFaceNER, 'START_TRAINING_EACH_N_UPDATES', new=1):
yield
@pytest.fixture
def mock_get_labeled_tasks():
with mock.patch.object(HuggingFaceNER, '_get_tasks', new=get_labeled_tasks_mock):
yield
@pytest.fixture
def mock_baseline_model_name_for_train():
with mock.patch('model.BASELINE_MODEL_NAME', new='distilbert/distilbert-base-uncased'):
yield
def test_fit(client, mock_get_labeled_tasks, mock_start_training, mock_baseline_model_name_for_train):
request = {
'action': 'ANNOTATION_CREATED',
'project': {
'id': 12345,
'label_config': '''
<View>
<Text name="text" value="$text"/>
<Labels name="ner" toName="text">
<Label value="Person"/>
<Label value="Location"/>
<Label value="Time"/>
</Labels>
</View>
'''
},
'annotation': {
'project': 12345
}
}
response = client.post('/webhook', data=json.dumps(request), content_type='application/json')
assert response.status_code == 201
# assert new model is created in ./results/finetuned_model directory
import os
from model import MODEL_DIR
results_dir = os.path.join(MODEL_DIR, 'finetuned_model')
assert os.path.exists(os.path.join(results_dir, 'pytorch_model.bin'))
# now let's test whether the model is trained by running predict
request = {
'tasks': [{
'data': {
'text': 'President Obama is speaking at 3pm today in New York.'
}
}],
# Your labeling configuration here
'label_config': '''
<View>
<Text name="text" value="$text"/>
<Labels name="ner" toName="text">
<Label value="Person"/>
<Label value="Location"/>
<Label value="Time"/>
</Labels>
</View>
'''
}
response = client.post('/predict', data=json.dumps(request), content_type='application/json')
assert response.status_code == 200
# TODO: we also need to check the prediction results to make sure the model is trained correctly
# but the training needs to be deterministic to make the test stable
# assert response is as expected
# remove './results/finetuned_model' directory after testing
import shutil
shutil.rmtree(results_dir)