-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathdata_loading.py
141 lines (115 loc) · 7.08 KB
/
data_loading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import pandas as pd
import numpy as np
import torch
import logging
import itertools
from data_util import GraphData, HeteroData, z_norm, create_hetero_obj
def get_data(args, data_config):
'''Loads the AML transaction data.
1. The data is loaded from the csv and the necessary features are chosen.
2. The data is split into training, validation and test data.
3. PyG Data objects are created with the respective data splits.
'''
transaction_file = f"{data_config['paths']['aml_data']}/{args.data}/formatted_transactions.csv" #replace this with your path to the respective AML data objects
df_edges = pd.read_csv(transaction_file)
logging.info(f'Available Edge Features: {df_edges.columns.tolist()}')
df_edges['Timestamp'] = df_edges['Timestamp'] - df_edges['Timestamp'].min()
max_n_id = df_edges.loc[:, ['from_id', 'to_id']].to_numpy().max() + 1
df_nodes = pd.DataFrame({'NodeID': np.arange(max_n_id), 'Feature': np.ones(max_n_id)})
timestamps = torch.Tensor(df_edges['Timestamp'].to_numpy())
y = torch.LongTensor(df_edges['Is Laundering'].to_numpy())
logging.info(f"Illicit ratio = {sum(y)} / {len(y)} = {sum(y) / len(y) * 100:.2f}%")
logging.info(f"Number of nodes (holdings doing transcations) = {df_nodes.shape[0]}")
logging.info(f"Number of transactions = {df_edges.shape[0]}")
edge_features = ['Timestamp', 'Amount Received', 'Received Currency', 'Payment Format']
node_features = ['Feature']
logging.info(f'Edge features being used: {edge_features}')
logging.info(f'Node features being used: {node_features} ("Feature" is a placeholder feature of all 1s)')
x = torch.tensor(df_nodes.loc[:, node_features].to_numpy()).float()
edge_index = torch.LongTensor(df_edges.loc[:, ['from_id', 'to_id']].to_numpy().T)
edge_attr = torch.tensor(df_edges.loc[:, edge_features].to_numpy()).float()
n_days = int(timestamps.max() / (3600 * 24) + 1)
n_samples = y.shape[0]
logging.info(f'number of days and transactions in the data: {n_days} days, {n_samples} transactions')
#data splitting
daily_irs, weighted_daily_irs, daily_inds, daily_trans = [], [], [], [] #irs = illicit ratios, inds = indices, trans = transactions
for day in range(n_days):
l = day * 24 * 3600
r = (day + 1) * 24 * 3600
day_inds = torch.where((timestamps >= l) & (timestamps < r))[0]
daily_irs.append(y[day_inds].float().mean())
weighted_daily_irs.append(y[day_inds].float().mean() * day_inds.shape[0] / n_samples)
daily_inds.append(day_inds)
daily_trans.append(day_inds.shape[0])
split_per = [0.6, 0.2, 0.2]
daily_totals = np.array(daily_trans)
d_ts = daily_totals
I = list(range(len(d_ts)))
split_scores = dict()
for i,j in itertools.combinations(I, 2):
if j >= i:
split_totals = [d_ts[:i].sum(), d_ts[i:j].sum(), d_ts[j:].sum()]
split_totals_sum = np.sum(split_totals)
split_props = [v/split_totals_sum for v in split_totals]
split_error = [abs(v-t)/t for v,t in zip(split_props, split_per)]
score = max(split_error) #- (split_totals_sum/total) + 1
split_scores[(i,j)] = score
else:
continue
i,j = min(split_scores, key=split_scores.get)
#split contains a list for each split (train, validation and test) and each list contains the days that are part of the respective split
split = [list(range(i)), list(range(i, j)), list(range(j, len(daily_totals)))]
logging.info(f'Calculate split: {split}')
#Now, we seperate the transactions based on their indices in the timestamp array
split_inds = {k: [] for k in range(3)}
for i in range(3):
for day in split[i]:
split_inds[i].append(daily_inds[day]) #split_inds contains a list for each split (tr,val,te) which contains the indices of each day seperately
tr_inds = torch.cat(split_inds[0])
val_inds = torch.cat(split_inds[1])
te_inds = torch.cat(split_inds[2])
logging.info(f"Total train samples: {tr_inds.shape[0] / y.shape[0] * 100 :.2f}% || IR: "
f"{y[tr_inds].float().mean() * 100 :.2f}% || Train days: {split[0][:5]}")
logging.info(f"Total val samples: {val_inds.shape[0] / y.shape[0] * 100 :.2f}% || IR: "
f"{y[val_inds].float().mean() * 100:.2f}% || Val days: {split[1][:5]}")
logging.info(f"Total test samples: {te_inds.shape[0] / y.shape[0] * 100 :.2f}% || IR: "
f"{y[te_inds].float().mean() * 100:.2f}% || Test days: {split[2][:5]}")
#Creating the final data objects
tr_x, val_x, te_x = x, x, x
e_tr = tr_inds.numpy()
e_val = np.concatenate([tr_inds, val_inds])
tr_edge_index, tr_edge_attr, tr_y, tr_edge_times = edge_index[:,e_tr], edge_attr[e_tr], y[e_tr], timestamps[e_tr]
val_edge_index, val_edge_attr, val_y, val_edge_times = edge_index[:,e_val], edge_attr[e_val], y[e_val], timestamps[e_val]
te_edge_index, te_edge_attr, te_y, te_edge_times = edge_index, edge_attr, y, timestamps
tr_data = GraphData (x=tr_x, y=tr_y, edge_index=tr_edge_index, edge_attr=tr_edge_attr, timestamps=tr_edge_times )
val_data = GraphData(x=val_x, y=val_y, edge_index=val_edge_index, edge_attr=val_edge_attr, timestamps=val_edge_times)
te_data = GraphData (x=te_x, y=te_y, edge_index=te_edge_index, edge_attr=te_edge_attr, timestamps=te_edge_times )
#Adding ports and time-deltas if applicable
if args.ports:
logging.info(f"Start: adding ports")
tr_data.add_ports()
val_data.add_ports()
te_data.add_ports()
logging.info(f"Done: adding ports")
if args.tds:
logging.info(f"Start: adding time-deltas")
tr_data.add_time_deltas()
val_data.add_time_deltas()
te_data.add_time_deltas()
logging.info(f"Done: adding time-deltas")
#Normalize data
tr_data.x = val_data.x = te_data.x = z_norm(tr_data.x)
if not args.model == 'rgcn':
tr_data.edge_attr, val_data.edge_attr, te_data.edge_attr = z_norm(tr_data.edge_attr), z_norm(val_data.edge_attr), z_norm(te_data.edge_attr)
else:
tr_data.edge_attr[:, :-1], val_data.edge_attr[:, :-1], te_data.edge_attr[:, :-1] = z_norm(tr_data.edge_attr[:, :-1]), z_norm(val_data.edge_attr[:, :-1]), z_norm(te_data.edge_attr[:, :-1])
#Create heterogenous if reverese MP is enabled
#TODO: if I observe wierd behaviour, maybe add .detach.clone() to all torch tensors, but I don't think they're attached to any computation graph just yet
if args.reverse_mp:
tr_data = create_hetero_obj(tr_data.x, tr_data.y, tr_data.edge_index, tr_data.edge_attr, tr_data.timestamps, args)
val_data = create_hetero_obj(val_data.x, val_data.y, val_data.edge_index, val_data.edge_attr, val_data.timestamps, args)
te_data = create_hetero_obj(te_data.x, te_data.y, te_data.edge_index, te_data.edge_attr, te_data.timestamps, args)
logging.info(f'train data object: {tr_data}')
logging.info(f'validation data object: {val_data}')
logging.info(f'test data object: {te_data}')
return tr_data, val_data, te_data, tr_inds, val_inds, te_inds