-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhmm.py
380 lines (269 loc) · 15.4 KB
/
hmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
tf.logging.set_verbosity(tf.logging.WARN)
class HiddenMarkovModel(object):
"""
Hidden Markov Model Class
Parameters:
-----------
- S: Number of states.
- T: Transition matrix of size S by S
stores probability from state i to state j.
- E: Emission matrix of size S by N (number of observations)
stores the probability of observing O_j from state S_i.
- T0: Initial state probabilities of size S.
"""
def __init__(self, T, E, T0, epsilon = 0.001, maxStep = 10):
with tf.name_scope('Inital_Parameters'):
with tf.name_scope('Scalar_constants'):
# Max number of iteration
self.maxStep = maxStep
# convergence criteria
self.epsilon = epsilon
# Number of possible states
self.S = T.shape[0]
# Number of possible observations
self.O = E.shape[0]
self.prob_state_1 = []
with tf.name_scope('Model_Parameters'):
# Emission probability
self.E = tf.Variable(E, dtype=tf.float64, name='emission_matrix')
# Transition matrix
self.T = tf.Variable(T, dtype=tf.float64, name='transition_matrix')
# Initial state vector
self.T0 = tf.Variable(tf.constant(T0, dtype=tf.float64, name='inital_state_vector'))
def initialize_viterbi_variables(self, shape):
pathStates = tf.Variable(tf.zeros(shape, dtype=tf.int64), name='States_matrix')
pathScores = tf.Variable(tf.zeros(shape, dtype=tf.float64), name='Score_matrix')
states_seq = tf.Variable(tf.zeros([shape[0]], dtype=tf.int64), name='States_sequence')
return pathStates, pathScores, states_seq
def belief_propagation(self, scores):
scores_reshape = tf.reshape(scores, (-1,1))
return tf.add(scores_reshape, tf.log(self.T))
def viterbi_inference(self, obs_seq):
# length of observed sequence
self.N = len(obs_seq)
# shape path Variables
shape = [self.N, self.S]
# observed sequence
x = tf.constant(obs_seq, dtype=tf.int32, name='observation_sequence')
with tf.name_scope('Init_viterbi_variables'):
# Initialize variables
pathStates, pathScores, states_seq = self.initialize_viterbi_variables(shape)
with tf.name_scope('Emission_seq_'):
# log probability of emission sequence
obs_prob_seq = tf.log(tf.gather(self.E, x))
obs_prob_list = tf.split(num_or_size_splits=self.N, value=obs_prob_seq)
with tf.name_scope('Starting_log-priors'):
# initialize with state starting log-priors
pathScores = tf.scatter_update(pathScores, 0, tf.log(self.T0) + tf.squeeze(obs_prob_list[0]))
with tf.name_scope('Belief_Propagation'):
for step, obs_prob in enumerate(obs_prob_list[1:]):
with tf.name_scope('Belief_Propagation_step_%s' %step):
# propagate state belief
belief = self.belief_propagation(pathScores[step, :])
# the inferred state by maximizing global function
# and update state and score matrices
pathStates = tf.scatter_update(pathStates, step + 1, tf.argmax(belief, 0))
pathScores = tf.scatter_update(pathScores, step + 1, tf.reduce_max(belief, 0) + tf.squeeze(obs_prob))
with tf.name_scope('Max_Likelyhood_update'):
# infer most likely last state
states_seq = tf.scatter_update(states_seq, self.N-1, tf.argmax(pathScores[self.N-1, :], 0))
with tf.name_scope('Backtrack'):
for step in range(self.N - 1, 0, -1):
with tf.name_scope('Back_track_step_%s' %step):
# for every timestep retrieve inferred state
state = states_seq[step]
idx = tf.reshape(tf.stack([step, state]), [1, -1])
state_prob = tf.gather_nd(pathStates, idx)
states_seq = tf.scatter_update(states_seq, step - 1, state_prob[0])
return states_seq, tf.exp(pathScores) # turn scores back to probabilities
def run_viterbi(self, obs_seq, summary=False):
state_graph, state_prob_graph = self.viterbi_inference(obs_seq)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
states_seq, state_prob = sess.run([state_graph, state_prob_graph])
if summary:
# Instantiate a SummaryWriter to output summaries and the Graph.
summary_writer = tf.summary.FileWriter('logs/', graph=sess.graph)
return states_seq, state_prob
def initialize_forw_back_variables(self, shape):
self.forward = tf.Variable(tf.zeros(shape, dtype=tf.float64), name='forward')
self.backward = tf.Variable(tf.zeros(shape, dtype=tf.float64), name='backward')
self.posterior = tf.Variable(tf.zeros(shape, dtype=tf.float64), name='posteriror')
def _forward(self, obs_prob_list):
with tf.name_scope('init_scaling_factor'):
self.scale = tf.Variable(tf.zeros([self.N], tf.float64)) #scale factors
with tf.name_scope('forward_first_step'):
# initialize with state starting priors
init_prob = tf.multiply(self.T0, tf.squeeze(obs_prob_list[0]))
# scaling factor at t=0
self.scale = tf.scatter_update(self.scale, 0, 1.0 / tf.reduce_sum(init_prob))
# scaled belief at t=0
self.forward = tf.scatter_update(self.forward, 0, self.scale[0] * init_prob)
# propagate belief
for step, obs_prob in enumerate(obs_prob_list[1:]):
with tf.name_scope('time_step-%s' %step):
# previous state probability
prev_prob = tf.expand_dims(self.forward[step, :], 0)
# transition prior
prior_prob = tf.matmul(prev_prob, self.T)
# forward belief propagation
forward_score = tf.multiply(prior_prob, tf.squeeze(obs_prob))
forward_prob = tf.squeeze(forward_score)
# scaling factor
self.scale = tf.scatter_update(self.scale, step+1, 1.0 / tf.reduce_sum(forward_prob))
# Update forward matrix
self.forward = tf.scatter_update(self.forward, step+1, self.scale[step+1] * forward_prob)
def _backward(self, obs_prob_list):
with tf.name_scope('backward_last_step'):
# initialize with state ending priors
self.backward = tf.scatter_update(self.backward, 0, self.scale[self.N-1] * tf.ones([self.S], dtype=tf.float64))
# propagate belief
for step, obs_prob in enumerate(obs_prob_list[:-1]):
with tf.name_scope('time_step-%s' %step):
# next state probability
next_prob = tf.expand_dims(self.backward[step, :], 1)
# observation emission probabilities
obs_prob_d = tf.diag(tf.squeeze(obs_prob))
# transition prior
prior_prob = tf.matmul(self.T, obs_prob_d)
# backward belief propagation
backward_score = tf.matmul(prior_prob, next_prob)
backward_prob = tf.squeeze(backward_score)
# Update backward matrix
self.backward = tf.scatter_update(self.backward, step+1, self.scale[self.N-2-step] * backward_prob)
self.backward = tf.assign(self.backward, tf.reverse(self.backward, [True, False]))
def _posterior(self):
# posterior score
self.posterior = tf.multiply(self.forward, self.backward)
marginal = tf.reduce_sum(self.posterior, 1)
self.posterior = self.posterior / tf.expand_dims(marginal, 1)
def re_estimate_emission(self, x):
states_marginal = tf.reduce_sum(self.gamma, 0)
seq_one_hot = tf.one_hot(tf.cast(x, tf.int64), self.O, 1, 0)
emission_score = tf.matmul(tf.cast(seq_one_hot, tf.float64), self.gamma, transpose_a=True)
return emission_score / states_marginal
def re_estimate_transition(self, x):
with tf.name_scope('Init_3D_tensor'):
self.M = tf.Variable(tf.zeros((self.N-1, self.S, self.S), tf.float64))
with tf.name_scope('3D_tensor_transition'):
for t in range(self.N - 1):
with tf.name_scope('time_step-%s' %t):
tmp_0 = tf.matmul(tf.expand_dims(self.forward[t, :], 0), self.T)
tmp_1 = tf.multiply(tmp_0, tf.expand_dims(tf.gather(self.E, x[t+1]), 0))
denom = tf.squeeze(tf.matmul(tmp_1, tf.expand_dims(self.backward[t+1, :], 1)))
with tf.name_scope('Init_new_transition'):
trans_re_estimate = tf.Variable(tf.zeros((self.S, self.S), tf.float64))
for i in range(self.S):
with tf.name_scope('State-%s' %i):
numer = self.forward[t, i] * self.T[i, :] * tf.gather(self.E, x[t+1]) * self.backward[t+1, :]
trans_re_estimate = tf.scatter_update(trans_re_estimate, i, numer / denom)
self.M = tf.scatter_update(self.M, t, trans_re_estimate)
with tf.name_scope('Smooth_gamma'):
self.gamma = tf.squeeze(tf.reduce_sum(self.M, 2))
T_new = tf.reduce_sum(self.M, 0) / tf.expand_dims(tf.reduce_sum(self.gamma, 0), 1)
with tf.name_scope('New_init_states_prob'):
T0_new = self.gamma[0,:]
with tf.name_scope('Append_gamma_final_time_step'):
prod = tf.expand_dims(tf.multiply(self.forward[self.N-1, :], self.backward[self.N-1, :]), 0)
s= prod/ tf.reduce_sum(prod)
self.gamma = tf.concat([self.gamma, s], 0)
self.prob_state_1.append(self.gamma[:, 0])
return T0_new, T_new
def check_convergence(self, new_T0, new_transition, new_emission):
delta_T0 = tf.reduce_max(tf.abs(self.T0 - new_T0)) < self.epsilon
delta_T = tf.reduce_max(tf.abs(self.T - new_transition)) < self.epsilon
delta_E = tf.reduce_max(tf.abs(self.E - new_emission)) < self.epsilon
return tf.logical_and(tf.logical_and(delta_T0, delta_T), delta_E)
def forward_backward(self, obs_prob_seq):
"""
runs forward backward algorithm on observation sequence
Arguments
---------
- obs_seq : matrix of size N by S, where N is number of timesteps and
S is the number of states
Returns
-------
- forward : matrix of size N by S representing
the forward probability of each state at each time step
- backward : matrix of size N by S representing
the backward probability of each state at each time step
- posterior : matrix of size N by S representing
the posterior probability of each state at each time step
"""
obs_prob_list_for = tf.split(num_or_size_splits=self.N, value=obs_prob_seq)
with tf.name_scope('forward_belief_propagation'):
# forward belief propagation
self._forward(obs_prob_list_for)
obs_prob_seq_rev = tf.reverse(obs_prob_seq, [True, False])
obs_prob_list_back = tf.split(num_or_size_splits=self.N, value=obs_prob_seq_rev)
with tf.name_scope('backward_belief_propagation'):
# backward belief propagation
self._backward(obs_prob_list_back)
def expectation_maximization_step(self, x):
# probability of emission sequence
obs_prob_seq = tf.gather(self.E, x)
with tf.name_scope('Forward_Backward'):
self.forward_backward(obs_prob_seq)
with tf.name_scope('Re_estimate_transition'):
new_T0, new_transition = self.re_estimate_transition(x)
with tf.name_scope('Re_estimate_emission'):
new_emission = self.re_estimate_emission(x)
with tf.name_scope('Check_Convergence'):
converged = self.check_convergence(new_T0, new_transition, new_emission)
with tf.name_scope('Update_parameters'):
self.T0 = tf.assign(self.T0, new_T0)
self.E = tf.assign(self.E, new_emission)
self.T = tf.assign(self.T, new_transition)
#self.count = tf.assign_add(self.count, 1)
with tf.name_scope('histogram_summary'):
_ = tf.summary.histogram(self.T0.name, self.T0)
_ = tf.summary.histogram(self.T.name, self.T)
_ = tf.summary.histogram(self.E.name, self.E)
return converged
def Baum_Welch_EM(self, obs_seq):
with tf.name_scope('Input_Observed_Sequence'):
# length of observed sequence
self.N = len(obs_seq)
# shape of Variables
shape = [self.N, self.S]
# observed sequence
x = tf.constant(obs_seq, dtype=tf.int32, name='observation_sequence')
with tf.name_scope('Initialize_variables'):
# initialize variables
self.initialize_forw_back_variables(shape)
converged = tf.cast(False, tf.bool)
#self.count = tf.Variable(tf.constant(0))
with tf.name_scope('Train_Baum_Welch'):
for i in range(self.maxStep):
with tf.name_scope('EM_step-%s' %i):
converged = self.expectation_maximization_step(x)
# TF while_loop op is buggy, should be fixed in future release
# def loop_conditions(converged, obs_seq):
# cond_1 = tf.logical_not(converged)
# cond_2 = tf.less(self.count, self.maxStep)
# return tf.logical_or(cond_1, cond_2)
# def body(converged, obs_seq):
# return self.expectation_maximization_step(obs_seq)
# while_params = [converged, obs_seq]
# c = tf.while_loop(loop_conditions, body, while_params)
return converged
def run_Baum_Welch_EM(self, obs_seq, summary=False, monitor_state_1=False):
converged = self.Baum_Welch_EM(obs_seq)
# Build the summary operation based on the TF collection of Summaries.
summary_op = tf.summary.merge_all()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
trans0, transition, emission, c = sess.run([self.T0, self.T, self.E, converged])
if monitor_state_1:
self.state_summary = np.array([sess.run(g) for g in self.prob_state_1])
if summary:
# Instantiate a SummaryWriter to output summaries and the Graph.
summary_writer = tf.train.SummaryWriter('logs/', graph=sess.graph)
summary_str = sess.run(summary_op)
summary_writer.add_summary(summary_str)
return trans0, transition, emission, c