-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_params.py
73 lines (58 loc) · 2.53 KB
/
test_params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import torch.nn as nn
import torch.nn.functional as F
# from networks.sync_batchnorm.batchnorm import SynchronizedBatchNorm2d
from torch.nn import SyncBatchNorm as SynchronizedBatchNorm2d
from networks.aspp import build_aspp
from networks.decoder import build_decoder
from networks.backbone import build_backbone
from torchstat import stat
class DeepLab(nn.Module):
def __init__(self, backbone='resnet', output_stride=16, num_classes=21,
sync_bn=False, freeze_bn=False):
super(DeepLab, self).__init__()
if backbone == 'drn':
output_stride = 8
if sync_bn:
BatchNorm = SynchronizedBatchNorm2d
else:
BatchNorm = nn.BatchNorm2d
self.backbone = build_backbone(backbone, output_stride, BatchNorm)
self.aspp = build_aspp(backbone, output_stride, BatchNorm)
self.decoder = build_decoder(num_classes, backbone, BatchNorm)
if freeze_bn:
self.freeze_bn()
def forward(self, input):
x, low_level_feat = self.backbone(input)
feature = self.aspp(x)
x1, x2 = self.decoder(feature, low_level_feat)
x2 = F.interpolate(x2, size=input.size()[2:], mode='bilinear', align_corners=True)
x1 = F.interpolate(x1, size=input.size()[2:], mode='bilinear', align_corners=True)
return x1, x2
def freeze_bn(self):
for m in self.modules():
if isinstance(m, SynchronizedBatchNorm2d):
m.eval()
elif isinstance(m, nn.BatchNorm2d):
m.eval()
def get_1x_lr_params(self):
modules = [self.backbone]
for i in range(len(modules)):
for m in modules[i].named_modules():
if isinstance(m[1], nn.Conv2d) or isinstance(m[1], SynchronizedBatchNorm2d) \
or isinstance(m[1], nn.BatchNorm2d):
for p in m[1].parameters():
if p.requires_grad:
yield p
def get_10x_lr_params(self):
modules = [self.aspp, self.decoder]
for i in range(len(modules)):
for m in modules[i].named_modules():
if isinstance(m[1], nn.Conv2d) or isinstance(m[1], SynchronizedBatchNorm2d) \
or isinstance(m[1], nn.BatchNorm2d):
for p in m[1].parameters():
if p.requires_grad:
yield p
if __name__ == '__main__':
net = DeepLab(num_classes=2, backbone='mobilenet')
stat(net, (3, 800, 800))