forked from ai-dawang/PlugNPlay-Modules
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRAB&HDRAB.py
157 lines (115 loc) · 5.01 KB
/
RAB&HDRAB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torch
import torch.nn as nn
#论文:Dual Residual Attention Network for Image Denoising
#论文地址:https://www.sciencedirect.com/science/article/abs/pii/S0031320324000426
class Basic(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, padding=0, bias=False):
super(Basic, self).__init__()
self.out_channels = out_planes
groups = 1
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, padding=padding, groups=groups, bias=bias)
self.relu = nn.ReLU()
def forward(self, x):
x = self.conv(x)
x = self.relu(x)
return x
class ChannelPool(nn.Module):
def __init__(self):
super(ChannelPool, self).__init__()
def forward(self, x):
return torch.cat((torch.max(x, 1)[0].unsqueeze(1), torch.mean(x, 1).unsqueeze(1)), dim=1)
class SAB(nn.Module):
def __init__(self):
super(SAB, self).__init__()
kernel_size = 5
self.compress = ChannelPool()
self.spatial = Basic(2, 1, kernel_size, padding=(kernel_size - 1) // 2, bias=False)
def forward(self, x):
x_compress = self.compress(x)
x_out = self.spatial(x_compress)
scale = torch.sigmoid(x_out)
return x * scale
## Channel Attention Layer
class CAB(nn.Module):
def __init__(self, nc, reduction=8, bias=False):
super(CAB, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv_du = nn.Sequential(
nn.Conv2d(nc, nc // reduction, kernel_size=1, padding=0, bias=bias),
nn.ReLU(inplace=True),
nn.Conv2d(nc // reduction, nc, kernel_size=1, padding=0, bias=bias),
nn.Sigmoid()
)
def forward(self, x):
y = self.avg_pool(x)
y = self.conv_du(y)
return x * y
class RAB(nn.Module):
def __init__(self, in_channels=64, out_channels=64, bias=True):
super(RAB, self).__init__()
kernel_size = 3
stride = 1
padding = 1
layers = []
layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias))
layers.append(nn.ReLU(inplace=True))
layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias))
self.res = nn.Sequential(*layers)
self.sab = SAB()
def forward(self, x):
x1 = x + self.res(x)
x2 = x1 + self.res(x1)
x3 = x2 + self.res(x2)
x3_1 = x1 + x3
x4 = x3_1 + self.res(x3_1)
x4_1 = x + x4
x5 = self.sab(x4_1)
x5_1 = x + x5
return x5_1
class HDRAB(nn.Module):
def __init__(self, in_channels=64, out_channels=64, bias=True):
super(HDRAB, self).__init__()
kernel_size = 3
reduction = 8
self.cab = CAB(in_channels, reduction, bias)
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=1, dilation=1, bias=bias)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=2, dilation=2, bias=bias)
self.conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=3, dilation=3, bias=bias)
self.relu3 = nn.ReLU(inplace=True)
self.conv4 = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=4, dilation=4, bias=bias)
self.conv3_1 = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=3, dilation=3, bias=bias)
self.relu3_1 = nn.ReLU(inplace=True)
self.conv2_1 = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=2, dilation=2, bias=bias)
self.conv1_1 = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=1, dilation=1, bias=bias)
self.relu1_1 = nn.ReLU(inplace=True)
self.conv_tail = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=1, dilation=1, bias=bias)
def forward(self, y):
y1 = self.conv1(y)
y1_1 = self.relu1(y1)
y2 = self.conv2(y1_1)
y2_1 = y2 + y
y3 = self.conv3(y2_1)
y3_1 = self.relu3(y3)
y4 = self.conv4(y3_1)
y4_1 = y4 + y2_1
y5 = self.conv3_1(y4_1)
y5_1 = self.relu3_1(y5)
y6 = self.conv2_1(y5_1+y3)
y6_1 = y6 + y4_1
y7 = self.conv1_1(y6_1+y2_1)
y7_1 = self.relu1_1(y7)
y8 = self.conv_tail(y7_1+y1)
y8_1 = y8 + y6_1
y9 = self.cab(y8_1)
y9_1 = y + y9
return y9_1
if __name__ == '__main__':
input = torch.randn(1, 64, 256, 256) #B C H W
block = RAB(in_channels=64, out_channels=64, bias=True)
output = block(input)
print(input.size())
print(output.size())
block2 = HDRAB(in_channels=64, out_channels=64, bias=True)
output2 = block2(input)
print(output2.size())