torch.cond is a structured control flow operator. It can be used to specify if-else like control flow and can logically be seen as implemented as follows.
def cond(
pred: Union[bool, torch.Tensor],
true_fn: Callable,
false_fn: Callable,
operands: Tuple[torch.Tensor]
):
if pred:
return true_fn(*operands)
else:
return false_fn(*operands)
Its unique power lies in its ability of expressing data-dependent control flow: it lowers to a conditional operator (torch.ops.higher_order.cond), which preserves predicate, true function and false functions. This unlocks great flexibility in writing and deploying models that change model architecture based on the value or shape of inputs or intermediate outputs of tensor operations.
Warning
torch.cond is a prototype feature in PyTorch. It has limited support for input and output types and doesn't support training currently. Please look forward to a more stable implementation in a future version of PyTorch. Read more about feature classification at: https://pytorch.org/blog/pytorch-feature-classification-changes/#prototype
Below is an example that uses cond to branch based on input shape:
import torch
def true_fn(x: torch.Tensor):
return x.cos() + x.sin()
def false_fn(x: torch.Tensor):
return x.sin()
class DynamicShapeCondPredicate(torch.nn.Module):
"""
A basic usage of cond based on dynamic shape predicate.
"""
def __init__(self):
super().__init__()
def forward(self, x: torch.Tensor) -> torch.Tensor:
def true_fn(x: torch.Tensor):
return x.cos()
def false_fn(x: torch.Tensor):
return x.sin()
return torch.cond(x.shape[0] > 4, true_fn, false_fn, (x,))
dyn_shape_mod = DynamicShapeCondPredicate()
We can eagerly run the model and expect the results vary based on input shape:
inp = torch.randn(3)
inp2 = torch.randn(5)
assert torch.equal(dyn_shape_mod(inp), false_fn(inp))
assert torch.equal(dyn_shape_mod(inp2), true_fn(inp2))
We can export the model for further transformations and deployment:
inp = torch.randn(4, 3)
dim_batch = torch.export.Dim("batch", min=2)
ep = torch.export.export(DynamicShapeCondPredicate(), (inp,), {}, dynamic_shapes={"x": {0: dim_batch}})
print(ep)
This gives us an exported program as shown below:
class GraphModule(torch.nn.Module): def forward(self, arg0_1: f32[s0, 3]): sym_size: Sym(s0) = torch.ops.aten.sym_size.int(arg0_1, 0) gt: Sym(s0 > 4) = sym_size > 4; sym_size = None true_graph_0 = self.true_graph_0 false_graph_0 = self.false_graph_0 conditional: f32[s0, 3] = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, [arg0_1]); gt = true_graph_0 = false_graph_0 = arg0_1 = None return (conditional,) class <lambda>(torch.nn.Module): def forward(self, arg0_1: f32[s0, 3]): cos: f32[s0, 3] = torch.ops.aten.cos.default(arg0_1) sin: f32[s0, 3] = torch.ops.aten.sin.default(arg0_1); arg0_1 = None add: f32[s0, 3] = torch.ops.aten.add.Tensor(cos, sin); cos = sin = None return add class <lambda>(torch.nn.Module): def forward(self, arg0_1: f32[s0, 3]): sin: f32[s0, 3] = torch.ops.aten.sin.default(arg0_1); arg0_1 = None return sin
Notice that torch.cond is lowered to torch.ops.higher_order.cond, its predicate becomes a Symbolic expression over the shape of input, and branch functions becomes two sub-graph attributes of the top level graph module.
Here is another example that showcases how to express a data-dependent control flow:
class DataDependentCondPredicate(torch.nn.Module):
"""
A basic usage of cond based on data dependent predicate.
"""
def __init__(self):
super().__init__()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return torch.cond(x.sum() > 4.0, true_fn, false_fn, (x,))
The exported program we get after export:
class GraphModule(torch.nn.Module): def forward(self, arg0_1: f32[s0, 3]): sum_1: f32[] = torch.ops.aten.sum.default(arg0_1) gt: b8[] = torch.ops.aten.gt.Scalar(sum_1, 4.0); sum_1 = None true_graph_0 = self.true_graph_0 false_graph_0 = self.false_graph_0 conditional: f32[s0, 3] = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, [arg0_1]); gt = true_graph_0 = false_graph_0 = arg0_1 = None return (conditional,) class <lambda>(torch.nn.Module): def forward(self, arg0_1: f32[s0, 3]): cos: f32[s0, 3] = torch.ops.aten.cos.default(arg0_1) sin: f32[s0, 3] = torch.ops.aten.sin.default(arg0_1); arg0_1 = None add: f32[s0, 3] = torch.ops.aten.add.Tensor(cos, sin); cos = sin = None return add class <lambda>(torch.nn.Module): def forward(self, arg0_1: f32[s0, 3]): sin: f32[s0, 3] = torch.ops.aten.sin.default(arg0_1); arg0_1 = None return sin
There are several useful invariants for torch.ops.higher_order.cond:
- For predicate:
- Dynamicness of predicate is preserved (e.g. gt shown in the above example)
- If the predicate in user-program is constant (e.g. a python bool constant), the pred of the operator will be a constant.
- For branches:
- The input and output signature will be a flattened tuple.
- They are torch.fx.GraphModule.
- Closures in original function becomes explicit inputs. No closures.
- No mutations on inputs or globals are allowed.
- For operands:
- It will also be a flat tuple.
- Nesting of torch.cond in user program becomes nested graph modules.
.. autofunction:: torch._higher_order_ops.cond.cond