forked from takechirio/seminarA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhands.py
47 lines (45 loc) · 1.73 KB
/
hands.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands
# Webカメラから入力
cap = cv2.VideoCapture(0)
with mp_hands.Hands(
model_complexity=0,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as hands:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
continue
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = hands.process(image)
# 検出された手の骨格をカメラ画像に重ねて描画
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_hand_landmarks:
width=cap.get(cv2.CAP_PROP_FRAME_WIDTH)
height=cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
# print("width"+str(cap.get(cv2.CAP_PROP_FRAME_WIDTH)))
# print("height"+str(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
# print("aaaaaaaaaaaaaaaaaaaaaaa")
print(results.multi_hand_landmarks[0].landmark[1].x)
# x=results.multi_hand_landmarks[0].landmark.x
# y=results.multi_hand_landmarks[0].landmark.y
# print(x,y)
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image,
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style())
cv2.drawMarker(image,(100,100),(0,0,0),markerType=cv2.MARKER_STAR, markerSize=10)
#cv2.imshow('MediaPipe Hands', cv2.flip(image, 1))
cv2.imshow('MediaPipe Hands', image)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()