-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhands.py
85 lines (73 loc) · 2.45 KB
/
hands.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import cv2
import mediapipe as mp
import numpy as np
import pandas as pd
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands
def identify_hand(landmark):
landmark_x=list()
landmark_y=list()
for i in range(21):
landmark_x.append(landmark[i].x)
landmark_y.append(landmark[i].y)
fingers=list() #親指、人差し指、中指、薬指、小指
straight_finger=0
for i in range(5):
x=np.array(landmark_x[4*i+1:4*(i+1)])
y=np.array(landmark_y[4*i+1:4*(i+1)])
coef=np.corrcoef(x,y)
fingers.append(abs(coef[0][1]))
if (abs(coef[0][1])>0.9):
straight_finger+=1
#print(straight_finger)
if straight_finger==5:
print("paa")
return 1
elif straight_finger==1 or straight_finger==0:
print("guu")
return 2
return -1
# Webカメラから入力
cap = cv2.VideoCapture(0)
with mp_hands.Hands(
model_complexity=0,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as hands:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
continue
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = hands.process(image)
# 検出された手の骨格をカメラ画像に重ねて描画
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_hand_landmarks:
width=cap.get(cv2.CAP_PROP_FRAME_WIDTH)
height=cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
identify_hand(results.multi_hand_landmarks[0].landmark)
landmark_x=list()
landmark_y=list()
for i in range(21):
x=results.multi_hand_landmarks[0].landmark[i].x*width
y=results.multi_hand_landmarks[0].landmark[i].y*height
landmark_x.append(x)
landmark_y.append(y)
#print(results.multi_handedness)
#print(x,y)
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image,
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style())
cv2.drawMarker(image,(100,100),(0,0,0),markerType=cv2.MARKER_STAR, markerSize=10)
#cv2.imshow('MediaPipe Hands', cv2.flip(image, 1))
cv2.imshow('MediaPipe Hands', image)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()